C/C++,动态 DP 问题的计算方法与源程序
1 文本格式
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 500010;
const int INF = 0x3f3f3f3f;
int Begin[maxn], Next[maxn], To[maxn], e, n, m;
int size[maxn], son[maxn], top[maxn], fa[maxn], dis[maxn], p[maxn], id[maxn], End[maxn];
int cnt, tot, a[maxn], f[maxn][2];
struct matrix {
?? ?int g[2][2];
?? ?matrix() { memset(g, 0, sizeof(g)); }
?? ?matrix operator*(const matrix& b) const ?
?? ?{
?? ??? ?matrix c;
?? ??? ?for (int i = 0; i <= 1; i++)
?? ??? ??? ?for (int j = 0; j <= 1; j++)
?? ??? ??? ??? ?for (int k = 0; k <= 1; k++)
?? ??? ??? ??? ??? ?c.g[i][j] = max(c.g[i][j], g[i][k] + b.g[k][j]);
?? ??? ?return c;
?? ?}
} Tree[maxn], g[maxn];?
inline void PushUp(int root) {
?? ?Tree[root] = Tree[root << 1] * Tree[root << 1 | 1];
}
inline void Build(int root, int l, int r) {
?? ?if (l == r) {
?? ??? ?Tree[root] = g[id[l]];
?? ??? ?return;
?? ?}
?? ?int Mid = l + r >> 1;
?? ?Build(root << 1, l, Mid);
?? ?Build(root << 1 | 1, Mid + 1, r);
?? ?PushUp(root);
}
inline matrix Query(int root, int l, int r, int L, int R) {
?? ?if (L <= l && r <= R) return Tree[root];
?? ?int Mid = l + r >> 1;
?? ?if (R <= Mid) return Query(root << 1, l, Mid, L, R);
?? ?if (Mid < L) return Query(root << 1 | 1, Mid + 1, r, L, R);
?? ?return Query(root << 1, l, Mid, L, R) *
?? ??? ?Query(root << 1 | 1, Mid + 1, r, L, R);
}
inline void Modify(int root, int l, int r, int pos) {
?? ?if (l == r) {
?? ??? ?Tree[root] = g[id[l]];
?? ??? ?return;
?? ?}
?? ?int Mid = l + r >> 1;
?? ?if (pos <= Mid)
?? ??? ?Modify(root << 1, l, Mid, pos);
?? ?else
?? ??? ?Modify(root << 1 | 1, Mid + 1, r, pos);
?? ?PushUp(root);
}
inline void Update(int x, int val) {
?? ?g[x].g[1][0] += val - a[x];
?? ?a[x] = val;
?? ?while (x) {
?? ??? ?matrix last = Query(1, 1, n, p[top[x]], End[top[x]]);
?? ??? ?Modify(1, 1, n,?? ??? ??? ?p[x]);
?? ??? ?matrix now = Query(1, 1, n, p[top[x]], End[top[x]]);
?? ??? ?x = fa[top[x]];
?? ??? ?g[x].g[0][0] +=
?? ??? ??? ?max(now.g[0][0], now.g[1][0]) - max(last.g[0][0], last.g[1][0]);
?? ??? ?g[x].g[0][1] = g[x].g[0][0];
?? ??? ?g[x].g[1][0] += now.g[0][0] - last.g[0][0];
?? ?}
}
inline void add(int u, int v) {
?? ?To[++e] = v;
?? ?Next[e] = Begin[u];
?? ?Begin[u] = e;
}
inline void DFS1(int u) {
?? ?size[u] = 1;
?? ?int Max = 0;
?? ?f[u][1] = a[u];
?? ?for (int i = Begin[u]; i; i = Next[i]) {
?? ??? ?int v = To[i];
?? ??? ?if (v == fa[u]) continue;
?? ??? ?dis[v] = dis[u] + 1;
?? ??? ?fa[v] = u;
?? ??? ?DFS1(v);
?? ??? ?size[u] += size[v];
?? ??? ?if (size[v] > Max) {
?? ??? ??? ?Max = size[v];
?? ??? ??? ?son[u] = v;
?? ??? ?}
?? ??? ?f[u][1] += f[v][0];
?? ??? ?f[u][0] += max(f[v][0], f[v][1]);
?? ?}
}
inline void DFS2(int u, int t) {
?? ?top[u] = t;
?? ?p[u] = ++cnt;
?? ?id[cnt] = u;
?? ?End[t] = cnt;
?? ?g[u].g[1][0] = a[u];
?? ?g[u].g[1][1] = -INF;
?? ?if (!son[u]) return;
?? ?DFS2(son[u], t);
?? ?for (int i = Begin[u]; i; i = Next[i]) {
?? ??? ?int v = To[i];
?? ??? ?if (v == fa[u] || v == son[u]) continue;
?? ??? ?DFS2(v, v);
?? ??? ?g[u].g[0][0] += max(f[v][0], f[v][1]);
?? ??? ?g[u].g[1][0] += f[v][0];
?? ?}
?? ?g[u].g[0][1] = g[u].g[0][0];
}
int main() {
?? ?scanf("%d%d", &n, &m);
?? ?for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
?? ?for (int i = 1; i <= n - 1; i++) {
?? ??? ?int u, v;
?? ??? ?scanf("%d%d", &u, &v);
?? ??? ?add(u, v);
?? ??? ?add(v, u);
?? ?}
?? ?dis[1] = 1;
?? ?DFS1(1);
?? ?DFS2(1, 1);
?? ?Build(1, 1, n);
?? ?for (int i = 1; i <= m; i++) {
?? ??? ?int x, val;
?? ??? ?scanf("%d%d", &x, &val);
?? ??? ?Update(x, val);
?? ??? ?matrix ans = Query(1, 1, n, 1, End[1]);
?? ??? ?printf("%d\n", max(ans.g[0][0], ans.g[1][0]));
?? ?}
?? ?return 0;
}
2 代码格式
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 500010;
const int INF = 0x3f3f3f3f;
int Begin[maxn], Next[maxn], To[maxn], e, n, m;
int size[maxn], son[maxn], top[maxn], fa[maxn], dis[maxn], p[maxn], id[maxn], End[maxn];
int cnt, tot, a[maxn], f[maxn][2];
struct matrix {
int g[2][2];
matrix() { memset(g, 0, sizeof(g)); }
matrix operator*(const matrix& b) const
{
matrix c;
for (int i = 0; i <= 1; i++)
for (int j = 0; j <= 1; j++)
for (int k = 0; k <= 1; k++)
c.g[i][j] = max(c.g[i][j], g[i][k] + b.g[k][j]);
return c;
}
} Tree[maxn], g[maxn];
inline void PushUp(int root) {
Tree[root] = Tree[root << 1] * Tree[root << 1 | 1];
}
inline void Build(int root, int l, int r) {
if (l == r) {
Tree[root] = g[id[l]];
return;
}
int Mid = l + r >> 1;
Build(root << 1, l, Mid);
Build(root << 1 | 1, Mid + 1, r);
PushUp(root);
}
inline matrix Query(int root, int l, int r, int L, int R) {
if (L <= l && r <= R) return Tree[root];
int Mid = l + r >> 1;
if (R <= Mid) return Query(root << 1, l, Mid, L, R);
if (Mid < L) return Query(root << 1 | 1, Mid + 1, r, L, R);
return Query(root << 1, l, Mid, L, R) *
Query(root << 1 | 1, Mid + 1, r, L, R);
}
inline void Modify(int root, int l, int r, int pos) {
if (l == r) {
Tree[root] = g[id[l]];
return;
}
int Mid = l + r >> 1;
if (pos <= Mid)
Modify(root << 1, l, Mid, pos);
else
Modify(root << 1 | 1, Mid + 1, r, pos);
PushUp(root);
}
inline void Update(int x, int val) {
g[x].g[1][0] += val - a[x];
a[x] = val;
while (x) {
matrix last = Query(1, 1, n, p[top[x]], End[top[x]]);
Modify(1, 1, n, p[x]);
matrix now = Query(1, 1, n, p[top[x]], End[top[x]]);
x = fa[top[x]];
g[x].g[0][0] +=
max(now.g[0][0], now.g[1][0]) - max(last.g[0][0], last.g[1][0]);
g[x].g[0][1] = g[x].g[0][0];
g[x].g[1][0] += now.g[0][0] - last.g[0][0];
}
}
inline void add(int u, int v) {
To[++e] = v;
Next[e] = Begin[u];
Begin[u] = e;
}
inline void DFS1(int u) {
size[u] = 1;
int Max = 0;
f[u][1] = a[u];
for (int i = Begin[u]; i; i = Next[i]) {
int v = To[i];
if (v == fa[u]) continue;
dis[v] = dis[u] + 1;
fa[v] = u;
DFS1(v);
size[u] += size[v];
if (size[v] > Max) {
Max = size[v];
son[u] = v;
}
f[u][1] += f[v][0];
f[u][0] += max(f[v][0], f[v][1]);
}
}
inline void DFS2(int u, int t) {
top[u] = t;
p[u] = ++cnt;
id[cnt] = u;
End[t] = cnt;
g[u].g[1][0] = a[u];
g[u].g[1][1] = -INF;
if (!son[u]) return;
DFS2(son[u], t);
for (int i = Begin[u]; i; i = Next[i]) {
int v = To[i];
if (v == fa[u] || v == son[u]) continue;
DFS2(v, v);
g[u].g[0][0] += max(f[v][0], f[v][1]);
g[u].g[1][0] += f[v][0];
}
g[u].g[0][1] = g[u].g[0][0];
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i <= n - 1; i++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
add(v, u);
}
dis[1] = 1;
DFS1(1);
DFS2(1, 1);
Build(1, 1, n);
for (int i = 1; i <= m; i++) {
int x, val;
scanf("%d%d", &x, &val);
Update(x, val);
matrix ans = Query(1, 1, n, 1, End[1]);
printf("%d\n", max(ans.g[0][0], ans.g[1][0]));
}
return 0;
}
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!