二叉树前中后序遍历——(非)递归写法

2023-12-13 23:28:57


在这里插入图片描述

  • 红色:前序遍历顺序
  • 绿色:中序遍历顺序
  • 蓝色:后续遍历顺序

前言

二叉树遍历也分为两种

  1. 广度优先遍历(Breadth-first order):尽可能先访问距离根最近的节点,也称为层序遍历
  2. 深度优先遍历(Depth-first order):对于二叉树,可以进一步分成三种(要深入到叶子节点)
    1. pre-order 前序遍历,对于每一棵子树,先访问该节点,然后是左子树,最后是右子树
    2. in-order 中序遍历,对于每一棵子树,先访问左子树,然后是该节点,最后是右子树
    3. post-order 后序遍历,对于每一棵子树,先访问左子树,然后是右子树,最后是该节点

递归实现

/**
 * <h3>前序遍历</h3>
 * @param node 节点
 */
static void preOrder(TreeNode node) {
    if (node == null) {
        return;
    }
    System.out.print(node.val + "\t"); // 值
    preOrder(node.left); // 左
    preOrder(node.right); // 右
}

/**
 * <h3>中序遍历</h3>
 * @param node 节点
 */
static void inOrder(TreeNode node) {
    if (node == null) {
        return;
    }
    inOrder(node.left); // 左
    System.out.print(node.val + "\t"); // 值
    inOrder(node.right); // 右
}

/**
 * <h3>后序遍历</h3>
 * @param node 节点
 */
static void postOrder(TreeNode node) {
    if (node == null) {
        return;
    }
    postOrder(node.left); // 左
    postOrder(node.right); // 右
    System.out.print(node.val + "\t"); // 值
}

非递归实现

因为非递归实现的话,在前中后序遍历的时候,需要记住回来的路,所以需要使用栈这种结构,下面的写法统一使用一般自定义写法LinkedListStack,如果在实际写力扣题的时候,需要改为java内置的Stack或者Deque来表示栈,下面的写法重点介绍思想

前序遍历

LinkedListStack<TreeNode> stack = new LinkedListStack<>();
TreeNode curr = root;

while (!stack.isEmpty() || curr != null) {
    if (curr != null) {
        stack.push(curr);
        System.out.println(curr);
        curr = curr.left;
    } else {
        TreeNode pop = stack.pop();
        curr = pop.right;
    }

}

中序遍历

LinkedListStack<TreeNode> stack = new LinkedListStack<>();
TreeNode curr = root;

while (!stack.isEmpty() || curr != null) {
    if (curr != null) {
        stack.push(curr);
        curr = curr.left;
    } else {
        TreeNode pop = stack.pop();
        System.out.println(pop);
        curr = pop.right;
    }
}

后序遍历

LinkedListStack<TreeNode> stack = new LinkedListStack<>();
TreeNode curr = root;     //代表当前节点
TreeNode pop = null;     //最近一次弹栈的元素

while (!stack.isEmpty() || curr != null) {
    if (curr != null) {
        stack.push(curr);
        curr = curr.left;
    } else {
        TreeNode peek = stack.peek();
        if (peek.right == null || peek.right == pop) {
            pop = stack.pop();
            System.out.println(pop);
        } else {
            curr = peek.right;
        }
    }
}

对于后序遍历,向回走时,需要处理完右子树才能 pop 出栈。如何知道右子树处理完成呢?

  • 如果栈顶元素的 r i g h t ≡ n u l l right \equiv null rightnull 表示没啥可处理的,可以出栈

  • 如果栈顶元素的 r i g h t ≠ n u l l right \neq null right=null

    • 那么使用 lastPop 记录最近出栈的节点,即表示从这个节点向回走
    • 如果栈顶元素的 r i g h t = = l a s t P o p right==lastPop right==lastPop 此时应当出栈

对于前、中两种遍历,实际以上代码从右子树向回走时,并未走完全程(stack 提前出栈了)后序遍历以上代码是走完全程了。

另外,前中后序遍历中,从栈中弹出来就表示这个结点处理完了

统一写法

LinkedList<TreeNode> stack = new LinkedList<>();

TreeNode curr = root; // 代表当前节点
TreeNode pop = null; // 最近一次弹栈的元素
while (curr != null || !stack.isEmpty()) {
    if (curr != null) ·{
        colorPrintln("前: " + curr.val, 31);
        stack.push(curr); // 压入栈,为了记住回来的路
        curr = curr.left;
    } else {
        TreeNode peek = stack.peek();
        // 右子树可以不处理, 对中序来说, 要在右子树处理之前打印
        if (peek.right == null) {
            colorPrintln("中: " + peek.val, 36);
            pop = stack.pop();
            colorPrintln("后: " + pop.val, 34);
        }
        // 右子树处理完成, 对中序来说, 无需打印
        else if (peek.right == pop) {
            pop = stack.pop();
            colorPrintln("后: " + pop.val, 34);
        }
        // 右子树待处理, 对中序来说, 要在右子树处理之前打印
        else {
            colorPrintln("中: " + peek.val, 36);
            curr = peek.right;
        }
    }
}

public static void colorPrintln(String origin, int color) {
    System.out.printf("\033[%dm%s\033[0m%n", color, origin);
}

力扣习题

E01. 前序遍历二叉树-Leetcode 144
E02. 中序遍历二叉树-Leetcode 94
E03. 后序遍历二叉树-Leetcode 145

文章来源:https://blog.csdn.net/qq_45858191/article/details/134907055
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。