Numpy 实现基尼指数算法的决策树
基尼系数实现决策树
基尼指数
Gini ? ( D ) = 1 ? ∑ k = 1 K ( ∣ C k ∣ ∣ D ∣ ) 2 \operatorname{Gini}(D)=1-\sum_{k=1}^{K}\left(\frac{\left|C_{k}\right|}{|D|}\right)^{2} Gini(D)=1?k=1∑K?(∣D∣∣Ck?∣?)2
特征 A A A条件下集合 D D D的基尼指数:
Gini ? ( D , A ) = ∣ D 1 ∣ ∣ D ∣ Gini ? ( D 1 ) + ∣ D 2 ∣ ∣ D ∣ Gini ? ( D 2 ) \operatorname{Gini}(D, A)=\frac{\left|D_{1}\right|}{|D|} \operatorname{Gini}\left(D_{1}\right)+\frac{\left|D_{2}\right|}{|D|} \operatorname{Gini}\left(D_{2}\right) Gini(D,A)=∣D∣∣D1?∣?Gini(D1?)+∣D∣∣D2?∣?Gini(D2?)
import numpy as np
def calculate_gini(labels):
# 计算标签的基尼系数
_, counts = np.unique(labels, return_counts=True)
probabilities = counts / len(labels)
gini = 1 - np.sum(probabilities ** 2)
return gini
def calculate_gini_index(data, labels, feature_index, threshold):
# 根据给定的特征和阈值划分数据
left_mask = data[:, feature_index] <= threshold
right_mask = data[:, feature_index] > threshold
left_labels = labels[left_mask]
right_labels = labels[right_mask]
# 计算左右子集的基尼系数
left_gini = calculate_gini(left_labels)
right_gini = calculate_gini(right_labels)
# 计算基尼指数
total_gini = calculate_gini(labels)
left_weight = len(left_labels) / len(labels)
right_weight = len(right_labels) / len(labels)
gini_index = (left_weight * left_gini) + (right_weight * right_gini)
return gini_index
def find_best_split(data, labels):
num_features = data.shape[1]
best_gini_index = float('inf')
best_feature_index = -1
best_threshold = None
for feature_index in range(num_features):
feature_values = data[:, feature_index]
unique_values = np.unique(feature_values)
for threshold in unique_values:
gini_index = calculate_gini_index(data, labels, feature_index, threshold)
if gini_index < best_gini_index:
best_gini_index = gini_index
best_feature_index = feature_index
best_threshold = threshold
return best_feature_index, best_threshold
def create_decision_tree(data, labels):
# 基本情况:如果所有标签都相同,则返回一个叶节点,其中包含该标签
if len(np.unique(labels)) == 1:
return {'label': labels[0]}
# 找到最佳的划分特征
best_feature_index, best_threshold = find_best_split(data, labels)
# 创建一个新的内部节点,其中包含最佳特征和阈值
node = {
'feature_index': best_feature_index,
'threshold': best_threshold,
'left': None,
'right': None
}
# 根据最佳特征和阈值划分数据
left_mask = data[:, best_feature_index] <= best_threshold
right_mask = data[:, best_feature_index] > best_threshold
left_data = data[left_mask]
left_labels = labels[left_mask]
right_data = data[right_mask]
right_labels = labels[right_mask]
# 递归创建左右子树
node['left'] = create_decision_tree(left_data, left_labels)
node['right'] = create_decision_tree(right_data, right_labels)
return node
def predict(node, sample):
if 'label' in node:
return node['label']
feature_value = sample[node['feature_index']]
if feature_value <= node['threshold']:
return predict(node['left'], sample)
else:
return predict(node['right'], sample)
# 示例数据集
data = np.array([
[1, 2, 0],
[1, 2, 1],
[1, 3, 1],
[2, 3, 1],
[2, 3, 0],
[2, 2, 0],
[1, 1, 0],
[1, 1, 1],
[2, 1, 1],
[1, 3, 0]
])
labels = np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1])
# 创建决策树
decision_tree = create_decision_tree(data, labels)
# 测试数据
test_data = np.array([
[1, 2, 0],
[2, 1, 1],
[1, 3, 1],
[2, 3, 0]
])
# 预测结果
for sample in test_data:
prediction = predict(decision_tree, sample)
print(f"样本: {sample}, 预测标签: {prediction}")
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!