无监督学习 聚类
2023-12-20 00:58:06
无监督学习概述
无监督学习方法概述
监督学习
在一个典型的监督学习中,训练集有标签y,我们的目标是找到能够区分正样本和负样本的决策边界,需要据此拟合一个假设函数。
无监督学习
在无监督学习中,我们的数据没有附带任何标签y,无监督学习主要分为聚类、降维、关联规则、推荐系统等方面
主要的无监督学习方法
- 聚类 (Clustering)
- 降维 ( Dimensionality Reduction )
- 关联规则 ( AssociationRules)
- 推荐系统 ( Recommender systems)
聚类
主要算法
密度聚类、层次聚类、K-means
主要应用
市场细分、文档聚类、图像分割、图像压缩、聚类分析、特征学习或者词典学习、确定犯罪易发地区、保险欺诈检测、公共交通数据分析、IT资产集群、客户细分、识别癌症数据、搜索引擎应用、医疗应用、药物活性预道
文章来源:https://blog.csdn.net/2201_75381449/article/details/135096269
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!