无监督学习 聚类

2023-12-20 00:58:06

无监督学习概述

无监督学习方法概述

监督学习

在一个典型的监督学习中,训练集有标签y,我们的目标是找到能够区分正样本和负样本的决策边界,需要据此拟合一个假设函数。

无监督学习

在无监督学习中,我们的数据没有附带任何标签y,无监督学习主要分为聚类、降维、关联规则、推荐系统等方面

主要的无监督学习方法

  • 聚类 (Clustering)
  • 降维 ( Dimensionality Reduction )
  • 关联规则 ( AssociationRules)
  • 推荐系统 ( Recommender systems)

聚类

主要算法

密度聚类、层次聚类、K-means

主要应用

市场细分、文档聚类、图像分割、图像压缩、聚类分析、特征学习或者词典学习、确定犯罪易发地区、保险欺诈检测、公共交通数据分析、IT资产集群、客户细分、识别癌症数据、搜索引擎应用、医疗应用、药物活性预道

文章来源:https://blog.csdn.net/2201_75381449/article/details/135096269
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。