时序预测 | Matlab基于灰色隐马尔可夫模型(HMMP-GM11)的时间序列预测
2024-01-09 20:28:05
时序预测 | Matlab基于灰色隐马尔可夫模型(HMMP-GM11)的时间序列预测
预测效果
基本介绍
灰色HMMP-GM11改进模型,通过引入隐马尔可夫模型(HMM)来对原始数据进行状态分析,然后利用GM(1,1)模型进行预测,从而提高了预测精度。并采用变量筛选MIV方法对变量进行筛选,对每个指标的重要性进行分析。内附具体流程步骤
程序设计
- 完整源码和数据下载地址私信回复Matlab基于灰色隐马尔可夫模型(HMMP-GM11)的时间序列预测。
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1', ps_output);
T_sim2 = mapminmax('reverse', t_sim2', ps_output);
%% V. 评价指标
%% 均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);
%% 决定系数
R1 = rsquare(T_train,T_sim1);
R2 = rsquare(T_test,T_sim2);
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));
%-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/124693040?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/124864369?spm=1001.2014.3001.5502
文章来源:https://blog.csdn.net/kjm13182345320/article/details/135488570
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!