从递归到记忆化搜索再到动态规划|单词拆分、最长递增子序列
2023-12-25 16:42:51
从递归到记忆化搜索再到动态规划|单词拆分、最长递增子序列
根据递归判断出需要用数组保存已经计算过的内容,采用记忆化搜索方式,推算出递推公式,实现动态规划。
模板代码
递归
import javax.management.loading.MLetMBean;
import java.util.Arrays;
/**
* $139 $300的模板代码
*/
public class Solution {
//定义全局变量;
int len;
public int func() {
//全局变量赋值;
//递归
process();
//递归结果处理;
}
//[index, len)
private int process(int index) {
int res = ;
if (index == 边界值) { //边界值处理
res = ;
} else { //否则递归查询
for (int i = index; i < len; i++) {
//逻辑处理
res = ;
}
}
return res;
}
}
递归/记忆化搜索,使用dp[]保存中间结果
创建dp表,每次递归前先查询表,若得到结果为-1,表示该值未计算过,否则直接从表中获取值。计算完值后将值填入表中。
import javax.management.loading.MLetMBean;
import java.util.Arrays;
/**
* $139 $300的模板代码
*/
public class Solution {
//定义全局变量;
int len;
int[] dp;
public int func2() {
//全局变量赋值
//1.初始化dp[]
Arrays.fill(dp, -1);
//4.表处理
}
private int process2(int index) {
//2.查表,-1表示未计算过
if (dp[index] != -1) {
return dp[index];
}
//3.写表
int res = ;
if (index == 边界值) {
res = ;
} else {
for (int i = index; i < len; i++) {
//逻辑处理
res = ;
}
}
dp[index] = res;
return res;
}
}
非递归/动态规划
从后往前填写表。
import javax.management.loading.MLetMBean;
import java.util.Arrays;
/**
* $139 $300的模板代码
*/
public class Solution {
public int func3() {
int len;
int[] dp;
//1.初始化边界值
dp[边界值] = ;
//2.写表
for (int i = len-1; i >= 0; i--) {
int res = ;
for (int j = i; j < len; j++) {
//逻辑处理;
res = ;
}
dp[i] = res;
}
//3.表处理
int result = 处理后的dp[]结果;
return result;
}
}
139 单词拆分
递归
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
public class $139 {
String s;
int len;
Set<String> set = new HashSet<>();
int[] dp;
//法一:递归
public boolean wordBreak(String s, List<String> wordDict) {
this.s = s;
this.len = s.length();
this.set.addAll(wordDict);
return process(0);
}
//[index, len)及其子串是否在字典中
//超过时间限制,不断递归,有一些子串被重复计算
private boolean process(int index) {
boolean res = false;
if (index == len) { //index遍历完字符串,则全部与字典中的单词匹配
res = true;
} else { //否则递归查询
for (int i = index; i < len; i++) {
if (set.contains(s.substring(index, i+1))) {
res |= process(i+1);
}
}
}
return res;
}
}
递归/记忆化搜索,使用dp[]保存中间结果
public class $139 {
String s;
int len;
HashSet<String> set = new HashSet<>();
int[] dp;
//法二:递归,使用dp
public boolean wordBreak2(String s, List<String> wordDict) {
this.set.addAll(wordDict);
this.s = s;
this.len = s.length();
this.dp = new int[this.len+1]; //+1
//1.初始化dp
Arrays.fill(dp, -1);
return process2(0);
}
//[index, n)及其子串是否在字典中
//使用dp[]保存已经计算过的子串结果
private boolean process2(int index) {
//2.查表,子串是否已计算过
//-1表示未计算,1表示子串在字典中,0表示子串不在字典中
if (dp[index] != -1) {
return dp[index] == 1;
}
boolean res = false;
if (index == len) { //index遍历完字符串,则全部与字典中的单词匹配
res = true;
} else { //否则进行计算dp[]
for (int i = index; i < len; i++) {
if (set.contains(s.substring(index, i+1))) {
res |= process2(i+1);
}
}
}
//3.写表
dp[index] = res ? 1 : 0;
return res;
}
}
非递归/动态规划
public class $139 {
String s;
int len;
HashSet<String> set = new HashSet<>();
int[] dp;
//法三:非递归,从后往前遍历
public boolean wordBreak3(String s, List<String> wordDict) {
int len = s.length();
Set<String> set = new HashSet<>(wordDict);
boolean[] dp = new boolean[len+1];
//空串,默认在字典中
dp[len] = true;
for (int i = len-1; i >= 0; i--) {
boolean res = false;
for (int j = i; j < len; j++) {
//若前缀子串[i,j]在字典中,则判断[j+1,len)及其子串是否在字典中
if (set.contains(s.substring(i, j+1))) {
//[j+1,len)及其子串只要有一个在字典中,则为true
res |= dp[j + 1];
}
}
dp[i] = res;
}
return dp[0];
}
}
300 最长递增子序列
递归
import java.util.Arrays;
public class $300 {
int[] nums;
int len;
//法一:递归,超出时间限制
public int lengthOfLIS(int[] nums) {
this.nums = nums;
this.len = nums.length;
//递归结果处理
int res = 0;
for (int i = 0; i < len; i++) {
// System.out.print(process(i) + " ");
res = Math.max(res, process(i));
}
return res;
}
//[index, len)递增子序列的长度
private int process(int index) {
int res = 1;
if (index == len) {
res = 1;
} else {
for (int i = index+1; i < len; i++) {
if (nums[index] < nums[i]) {
res = Math.max(res, 1+process(i));
// res = 1 + process(i);
}
}
}
return res;
}
}
递归/记忆化搜索,使用dp[]保存中间结果
import java.util.Arrays;
public class $300 {
int[] nums;
int len;
int[] dp;
//法二:递归,使用dp[]保存结果
public int lengthOfLIS2(int[] nums) {
this.nums = nums;
this.len = nums.length;
this.dp = new int[len];
//1.初始化
Arrays.fill(dp, -1);
//4.表处理
int res = 0;
for (int i = 0; i < len; i++) {
res = Math.max(res, process2(i));
}
return res;
}
private int process2(int index) {
//2.查表
if (dp[index] != -1) {
return dp[index];
}
int res = 1;
if (index == len-1) {
res = 1;
} else {
for (int i = index+1; i < len; i++) {
//若nums[i]大,则找到了一个增序列,则继续判断[i,len)上的增序列
if (nums[index] < nums[i]) {
//判断增序列是否为最大值,是则更新
res = Math.max(res, 1+process2(i));
}
}
}
//3.写表
dp[index] = res;
return res;
}
}
非递归/动态规划
import java.util.Arrays;
public class $300 {
//法三:非递归
public int lengthOfLIS3(int[] nums) {
int len = nums.length;
int[] dp = new int[len];
//1.初始化边界值
//最后一个数字默认是1
dp[len-1] = 1;
//2.写表
for (int i = len-1; i >= 0; i--) {
int res = 1;
for (int j = i+1; j < len; j++) {
//若nums[j]大,则找到了一个增序列,则继续判断[j,len)上的增序列
if (nums[i] < nums[j]) {
//判断增序列是否为最大值,是则更新
res = Math.max(res, 1+dp[j]);
}
}
dp[i] = res;
}
//3.表处理
//找到dp[]的最大值
int result = -1;
for (int i = 0; i < len; i++) {
result = Math.max(result, dp[i]);
}
return result;
}
}
文章来源:https://blog.csdn.net/weixin_43217281/article/details/135201745
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!