不同像平面坐标系下的Brown畸变系数互转
不同像平面坐标系下Brown畸变系数转换
记 u , v u,v u,v为像素为单位的坐标,f为焦距,单位也是像素。
记 x , y x,y x,y为理想坐标。本文推导两种情况下的Brown畸变系数转换关系:
- 相同坐标系定义、不同的坐标单位(像素坐标与归一化坐标)的畸变系数关系
- 坐标系原点相同、y轴方向相反的坐标系之间畸变系数关系
像素坐标与归一化坐标的畸变系数的关系推导
像素为单位的畸变计算
使用像素坐标计算畸变值的公式为:
{ d u = u ( K 1 r 2 + K 2 r 4 + K 3 r 6 ) + P 1 ( r 2 + 2 u 2 ) + 2 P 2 u v d v = v ( K 1 r 2 + K 2 r 4 + K 3 r 6 ) + P 2 ( r 2 + 2 v 2 ) + 2 P 1 u v (A) \begin{cases} du = u(K_1 r^2+K_2 r^4+K_3 r^6)+P_1(r^2+2u^2)+2P_2 uv\\ dv = v(K_1 r^2+K_2 r^4+K_3 r^6)+P_2(r^2+2v^2)+2P_1 uv\\ \end{cases}\tag{A} {du=u(K1?r2+K2?r4+K3?r6)+P1?(r2+2u2)+2P2?uvdv=v(K1?r2+K2?r4+K3?r6)+P2?(r2+2v2)+2P1?uv?(A)
计算机视觉的归一化坐标畸变计算
记 u , v u,v u,v为像素为单位的坐标,f为焦距,单位也是像素。计算机视觉使用归一化坐标:
{ x = u f y = v f (B) \begin{cases}x=\dfrac{u}{f}\\y=\dfrac{v}{f}\end{cases}\tag{B} ? ? ??x=fu?y=fv??(B)
计算畸变值的公式为:
{ d x = x ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 1 ( r 2 + 2 x 2 ) + 2 p 2 x y d y = y ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 2 ( r 2 + 2 y 2 ) + 2 p 1 x y (C) \begin{cases} dx=x(k_1 r^2+k_2 r^4+k_3 r^6)+p_1(r^2+2x^2)+2p_2 xy\\ dy=y(k_1 r^2+k_2 r^4+k_3 r^6)+p_2(r^2+2y^2)+2p_1 xy\\ \end{cases}\tag{C} {dx=x(k1?r2+k2?r4+k3?r6)+p1?(r2+2x2)+2p2?xydy=y(k1?r2+k2?r4+k3?r6)+p2?(r2+2y2)+2p1?xy?(C)
推导过程
对比(A)
、(C)
两个公式,将(C)
式中的x,y按照(B)
替换为u,v的表达式,得:
{
d
u
f
=
u
f
(
k
1
R
2
f
2
+
k
2
R
4
f
4
+
k
3
R
6
f
6
)
+
p
1
(
R
2
f
2
+
2
u
2
f
2
)
+
2
p
2
u
f
v
f
d
v
f
=
v
f
(
k
1
R
2
f
2
+
k
2
R
4
f
4
+
k
3
R
6
f
6
)
+
p
2
(
R
2
f
2
+
2
v
2
f
2
)
+
2
p
1
u
f
v
f
(D)
\begin{cases} \dfrac{du}{f}=\dfrac{u}{f}(k_1 \dfrac{R^2}{f^2}+k_2 \dfrac{R^4}{f^4}+k_3 \dfrac{R^6}{f^6})+p_1(\dfrac{R^2}{f^2}+2\dfrac{u^2}{f^2})+2p_2 \dfrac{u}{f}\dfrac{v}{f}\\ \dfrac{dv}{f}=\dfrac{v}{f}(k_1 \dfrac{R^2}{f^2}+k_2 \dfrac{R^4}{f^4}+k_3 \dfrac{R^6}{f^6})+p_2(\dfrac{R^2}{f^2}+2\dfrac{v^2}{f^2})+2p_1 \dfrac{u}{f}\dfrac{v}{f}\\ \end{cases}\tag{D}
?
?
??fdu?=fu?(k1?f2R2?+k2?f4R4?+k3?f6R6?)+p1?(f2R2?+2f2u2?)+2p2?fu?fv?fdv?=fv?(k1?f2R2?+k2?f4R4?+k3?f6R6?)+p2?(f2R2?+2f2v2?)+2p1?fu?fv??(D)
其中,
R
2
=
u
2
+
v
2
R^2=u^2+v^2
R2=u2+v2
整理得:
{
d
u
f
=
u
f
(
k
1
f
2
R
2
+
k
2
f
4
R
4
+
k
3
f
6
R
6
)
+
p
1
f
2
(
R
2
+
2
u
2
)
+
2
p
2
f
2
u
v
d
v
f
=
v
f
(
k
1
f
2
R
2
+
k
2
f
4
R
4
+
k
3
f
6
R
6
)
+
p
2
f
2
(
R
2
+
2
v
2
)
+
2
p
1
f
2
u
v
(E)
\begin{cases} \dfrac{du}{f}=\dfrac{u}{f}( \dfrac{k_1}{f^2}R^2+ \dfrac{k_2}{f^4}R^4+ \dfrac{k_3}{f^6}R^6)+\dfrac{p_1}{f^2}(R^2+2u^2)+2 \dfrac{p_2}{f^2}uv\\ \dfrac{dv}{f}=\dfrac{v}{f}( \dfrac{k_1}{f^2}R^2+ \dfrac{k_2}{f^4}R^4+ \dfrac{k_3}{f^6}R^6)+\dfrac{p_2}{f^2}(R^2+2v^2)+2 \dfrac{p_1}{f^2}uv\\ \end{cases}\tag{E}
?
?
??fdu?=fu?(f2k1??R2+f4k2??R4+f6k3??R6)+f2p1??(R2+2u2)+2f2p2??uvfdv?=fv?(f2k1??R2+f4k2??R4+f6k3??R6)+f2p2??(R2+2v2)+2f2p1??uv?(E)
(E)
式两边乘f
,得:
{
d
u
=
u
(
k
1
f
2
R
2
+
k
2
f
4
R
4
+
k
3
f
6
R
6
)
+
p
1
f
(
R
2
+
2
u
2
)
+
2
p
2
f
u
v
d
v
=
v
(
k
1
f
2
R
2
+
k
2
f
4
R
4
+
k
3
f
6
R
6
)
+
p
2
f
(
R
2
+
2
v
2
)
+
2
p
1
f
u
v
(F)
\begin{cases} du=u( \dfrac{k_1}{f^2}R^2+ \dfrac{k_2}{f^4}R^4+ \dfrac{k_3}{f^6}R^6)+\dfrac{p_1}{f}(R^2+2u^2)+2 \dfrac{p_2}{f}uv\\ dv=v( \dfrac{k_1}{f^2}R^2+ \dfrac{k_2}{f^4}R^4+ \dfrac{k_3}{f^6}R^6)+\dfrac{p_2}{f}(R^2+2v^2)+2 \dfrac{p_1}{f}uv\\ \end{cases}\tag{F}
?
?
??du=u(f2k1??R2+f4k2??R4+f6k3??R6)+fp1??(R2+2u2)+2fp2??uvdv=v(f2k1??R2+f4k2??R4+f6k3??R6)+fp2??(R2+2v2)+2fp1??uv?(F)
对比(C)(F)
两式,即得:
K 1 = k 1 f 2 K 2 = k 2 f 4 K 3 = k 3 f 6 P 1 = p 1 f P 2 = p 2 f \begin{aligned}K_1 &= \dfrac{k_1}{f^2}\\ K_2 &= \dfrac{k_2}{f^4}\\ K_3 &= \dfrac{k_3}{f^6}\\ P_1 &= \dfrac{p_1}{f}\\ P_2 &= \dfrac{p_2}{f}\\\end{aligned} K1?K2?K3?P1?P2??=f2k1??=f4k2??=f6k3??=fp1??=fp2???
XRight-YUp 与 XRight-YDown的畸变系数的关系推导
摄影测量坐标系常用x轴向右y轴向上的像平面坐标系(XRight-YUp);计算机视觉常用x轴向右y轴向下的像平面坐标系(XRight-YDown)。
设XRightY-Down的图像坐标系中一点坐标为
(
x
,
y
)
(x,y)
(x,y),畸变改正数为
(
d
x
,
d
y
)
(dx,dy)
(dx,dy);在相同原点的XRight-YUp中坐标为
(
x
,
?
y
)
(x,-y)
(x,?y),畸变改正数为
(
d
x
,
?
d
y
)
(dx,-dy)
(dx,?dy)。它们计算畸变的公式形式相同,均符合(G)
式:
{ d x = x ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 1 ( r 2 + 2 x 2 ) + 2 p 2 x y d y = y ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 2 ( r 2 + 2 y 2 ) + 2 p 1 x y (G) \begin{cases} dx=x(k_1 r^2+k_2 r^4+k_3 r^6)+p_1(r^2+2x^2)+2p_2 xy\\ dy=y(k_1 r^2+k_2 r^4+k_3 r^6)+p_2(r^2+2y^2)+2p_1 xy\\ \end{cases}\tag{G} {dx=x(k1?r2+k2?r4+k3?r6)+p1?(r2+2x2)+2p2?xydy=y(k1?r2+k2?r4+k3?r6)+p2?(r2+2y2)+2p1?xy?(G)
设在XRightY-Down的图像坐标系中畸变参数为 k 1 , k 2 , k 3 , p 1 , p 2 k_1,k_2,k_3,p_1,p_2 k1?,k2?,k3?,p1?,p2?;在XRightY-Up的图像坐标系中畸变参数为 k 1 ′ , k 2 ′ , k 3 ′ , p 1 ′ , p 2 ′ k'_1,k'_2,k'_3,p'_1,p'_2 k1′?,k2′?,k3′?,p1′?,p2′?,则我们有:
{ d x = x ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 1 ( r 2 + 2 x 2 ) + 2 p 2 x y = x ( k 1 ′ r 2 + k 2 ′ r 4 + k 3 ′ r 6 ) + p 1 ′ ( r 2 + 2 x 2 ) + 2 p 2 ′ x ( ? y ) ? d y = ? ( y ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 2 ( r 2 + 2 y 2 ) + 2 p 1 x y ) = ( ? y ) ( k 1 ′ r 2 + k 2 ′ r 4 + k 3 ′ r 6 ) + p 2 ′ ( r 2 + 2 ( ? y ) 2 ) + 2 p 1 ′ x ( ? y ) (H) \begin{cases} dx = x(k_1 r^2+k_2 r^4+k_3 r^6)+p_1(r^2+2x^2)+2p_2 xy=x(k'_1 r^2+k'_2 r^4+k'_3 r^6)+p'_1(r^2+2x^2)+2p'_2 x(-y)\\ -dy = -(y(k_1 r^2+k_2 r^4+k_3 r^6)+p_2(r^2+2y^2)+2p_1 xy)=(-y)(k'_1 r^2+k'_2 r^4+k'_3 r^6)+p'_2(r^2+2(-y)^2)+2p'_1 x(-y)\\ \end{cases}\tag{H} {dx=x(k1?r2+k2?r4+k3?r6)+p1?(r2+2x2)+2p2?xy=x(k1′?r2+k2′?r4+k3′?r6)+p1′?(r2+2x2)+2p2′?x(?y)?dy=?(y(k1?r2+k2?r4+k3?r6)+p2?(r2+2y2)+2p1?xy)=(?y)(k1′?r2+k2′?r4+k3′?r6)+p2′?(r2+2(?y)2)+2p1′?x(?y)?(H)
整理得:
{ x ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) + p 1 ( r 2 + 2 x 2 ) + 2 p 2 x y = x ( k 1 ′ r 2 + k 2 ′ r 4 + k 3 ′ r 6 ) + p 1 ′ ( r 2 + 2 x 2 ) ? 2 p 2 ′ x y ? y ( k 1 r 2 + k 2 r 4 + k 3 r 6 ) ? p 2 ( r 2 + 2 y 2 ) ? 2 p 1 x y = ? y ( k 1 ′ r 2 + k 2 ′ r 4 + k 3 ′ r 6 ) + p 2 ′ ( r 2 + 2 y 2 ) ? 2 p 1 ′ x y (I) \begin{cases} x(k_1 r^2+k_2 r^4+k_3 r^6)+p_1(r^2+2x^2)+2p_2 xy=x(k'_1 r^2+k'_2 r^4+k'_3 r^6)+p'_1(r^2+2x^2)-2p'_2 xy\\ -y(k_1 r^2+k_2 r^4+k_3 r^6)-p_2(r^2+2y^2)-2p_1 xy=-y(k'_1 r^2+k'_2 r^4+k'_3 r^6)+p'_2(r^2+2y^2)-2p'_1 xy\\ \end{cases}\tag{I} {x(k1?r2+k2?r4+k3?r6)+p1?(r2+2x2)+2p2?xy=x(k1′?r2+k2′?r4+k3′?r6)+p1′?(r2+2x2)?2p2′?xy?y(k1?r2+k2?r4+k3?r6)?p2?(r2+2y2)?2p1?xy=?y(k1′?r2+k2′?r4+k3′?r6)+p2′?(r2+2y2)?2p1′?xy?(I)
于是可得:
k 1 ′ = k 1 k 2 ′ = k 2 k 3 ′ = k 3 p 1 ′ = p 1 p 2 ′ = ? p 2 \begin{aligned}k'_1&=k_1\\ k'_2& = k_2\\ k'_3 &= k_3\\ p'_1& = p_1\\ p'_2 &= -p_2\\\end{aligned} k1′?k2′?k3′?p1′?p2′??=k1?=k2?=k3?=p1?=?p2??
即,这两个坐标系中的畸变参数互转时仅需要将 p 2 p_2 p2?取相反数,其他畸变系数可通用。
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!