二叉树的非递归遍历(详解)

2023-12-13 10:26:19

在这里插入图片描述
二叉树非递归遍历原理
在这里插入图片描述使用先序遍历的方式完成该二叉树的非递归遍历
通过添加现有项目的方式将原来编写好的栈文件导入项目中

在这里插入图片描述
目前项目存在三个文件一个头文件,两个cpp文件:

项目头文件的代码截图:QueueStorage.h
在这里插入图片描述项目头文件的代码:QueueStorage.h

#ifndef LINKSTACK_H
#define LINKSTACK_H
#include <stdio.h>
#include <stdlib.h>


// 链式栈的节点
typedef struct LINKNODE {
	struct LINKNODE* next;
}LinkNode;
// 链式栈
typedef struct LINKSTACK {
	LinkNode head;
	int size;

}LinkStack;

// 初始化函数
LinkStack* Init_LinkStack();
// 入栈
void Push_LinkStack(LinkStack* stack, LinkNode* data);
// 出栈
void Pop_LinkStack(LinkStack* stack);
// 返回栈顶元素
LinkNode* TopLinkStack(LinkStack* stack);
// 返回栈元素的个数
int Size_LinkStack(LinkStack* stack);
// 清空栈
void Clear_LinkStack(LinkStack* stack);
// 销毁栈
void FreeSpace_LinkStack(LinkStack* stack);
#endif

项目cpp文件代码截图:QueueStorage.cpp该文件主要用于栈功能的实现
在这里插入图片描述栈逻辑文件具体代码:QueueStorage.cpp

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <string.h>
#include "QueueStorage.h"

// 初始化函数
LinkStack* Init_LinkStack() {
    LinkStack* stack = (LinkStack*)malloc(sizeof(LinkStack));
    stack->head.next = NULL;
    stack->size = 0;
    return stack;
};
// 入栈
void Push_LinkStack(LinkStack* stack, LinkNode* data) {
    if (stack == NULL) {
        return;
    }
    if (data == NULL) {
        return;
    }
    // 入栈
    data->next = stack->head.next;
    stack->head.next = data;
    stack->size++;
};
// 出栈
void Pop_LinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return;
    }
    if (stack->size == 0) {
        return;
    }

    // 第一个有效节点
    LinkNode* pNext = stack->head.next;
    stack->head.next = pNext->next;
    stack->size--;



};
// 返回栈顶元素
LinkNode* TopLinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return NULL;
    }
    if (stack->size == 0) {
        return NULL;
    }
    // 返回栈顶元素
    return stack->head.next;
};

// 返回栈元素的个数
int Size_LinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return -1;
    }
    return stack->size;
};
// 清空栈
void Clear_LinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return;
    }
    // 清空栈
    stack->head.next = NULL;
    stack->size = 0;

};
// 销毁栈
void FreeSpace_LinkStack(LinkStack* stack) {
    if (stack == NULL) {
        return;
    }
    free(stack);
};

二叉树cpp文件截图:BinaryTree.cpp

在这里插入图片描述二叉树cpp文件逻辑代码实现先序遍历:BinaryTree.cpp

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <string.h>
#include "QueueStorage.h"

#define MY_FALSE 0
#define MY_TRUE 1


// 二叉树的节点
typedef struct BINARYNODE {
    // 数据
    char ch;
    // 二叉树的左节点
    struct BINARYNODE* lchild;
    // 二叉树的右节点
    struct BINARYNODE* rchild;
}BinaryNode;
//二叉树的非递归遍历
typedef struct BITREESTACKNODE {
    LinkNode* node;
    BinaryNode* root;
    int flag;
}BiTreeStackNode;


// 创建栈中的节点
BiTreeStackNode* CreateBiTreeStackNode(BinaryNode* node, int flag) {
    BiTreeStackNode* newnode = (BiTreeStackNode*)malloc(sizeof(BiTreeStackNode));
    newnode->root = node;
    newnode->flag = flag;
    return newnode;


}

void NonRecursion(BinaryNode* root) {
    // 创建栈
    LinkStack* stack = Init_LinkStack();
    // 将根节点放入栈中
    Push_LinkStack(stack, (LinkNode*)CreateBiTreeStackNode(root, MY_FALSE));
    // 判断栈是否为空
    while (Size_LinkStack(stack) > 0) {
         // 先弹出栈顶元素
        BiTreeStackNode* node = (BiTreeStackNode*)TopLinkStack(stack);
        Pop_LinkStack(stack);
        // 判断弹出的节点是否为空
        if (node->root == NULL) {
            continue;
        }
        if (node->flag == MY_TRUE) {
            printf("%c", node->root->ch);
        }
        else {
            // 当前节点的右节点入栈
            Push_LinkStack(stack,(LinkNode*)CreateBiTreeStackNode(node->root->rchild,MY_FALSE));
            // 当前节点的左节点入栈
            Push_LinkStack(stack, (LinkNode*)CreateBiTreeStackNode(node->root->lchild, MY_FALSE));
            // 当前节点入栈
            node->flag = MY_TRUE;
            Push_LinkStack(stack, (LinkNode*)node);
        }
    }
}
// 二叉树的递归遍历
void Recursion(BinaryNode* root) {
    if (root == NULL) {
        return;
    }
    printf("%c",root->ch);
    // 递归遍历
    Recursion(root->lchild);
    Recursion(root->rchild);

}



void CresteBinaryTree() {
    // 将节点创建出来
    BinaryNode node1 = { 'A',NULL,NULL};
    BinaryNode node2 = { 'B',NULL,NULL };
    BinaryNode node3 = { 'C',NULL,NULL };
    BinaryNode node4 = { 'D',NULL,NULL };
    BinaryNode node5 = { 'E',NULL,NULL };
    BinaryNode node6 = { 'F',NULL,NULL };
    BinaryNode node7 = { 'G',NULL,NULL };
    BinaryNode node8 = { 'H',NULL,NULL };
    // 建立节点之间的关系
    node1.lchild = &node2;
    node1.rchild = &node6;
    node2.rchild = &node3;
    node3.lchild = &node4;
    node3.rchild = &node5;
    node6.rchild = &node7;
    node7.lchild = &node8;
    //二叉树的非递归打印
    NonRecursion(&node1);
    // 二叉树的递归遍历
    printf("\n");
   // Recursion(&node1);
}

int main()
{
    CresteBinaryTree();
    system("pause");
    return 0;
}

项目运行结果展示
在这里插入图片描述

文章来源:https://blog.csdn.net/qq_45973003/article/details/134880251
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。