pl_vio线特征·part II

2023-12-17 14:36:28

0.引言

现在CSDN有字数限制了,被迫拆分为两篇文章。

在这里插入图片描述

4.线段残差对位姿的导数

4.1.直线的观测模型和误差

图2 空间直线投影到像素平面
要想知道线特征的观测模型,我们需要知道线特征从归一化平面到像素平面的投影内参矩阵 K \cal{K} K 。如图2,点 C C C D D D 是直线 L = ( n ? , d ? ) ? \mathcal{L} =(\mathbf{n}^{\top},\mathbf{d}^{\top})^{\top} L=(n?,d?)? 上两点,点 c c c d d d 是它们在像素平面上的投影。 c = K C c = KC c=KC, d = K D d=KD d=KD , K K K是相机的内参矩阵。 n = [ C ] × D , l = [ l 1 l 2 l 3 ] = [ c ] × d \mathbf{n}=[C]_{\times}D ,\mathscr{l} = \left[\begin{matrix}l_1&l_2&l_3\end{matrix}\right]=[c]_{\times}d n=[C]×?Dl=[l1??l2??l3??]=[c]×?d 。那么有

l = K n = [ f y 0 0 0 f x 0 ? f y c x ? f x c y f x f y ] n \mathscr{l} = \mathcal{K} \mathbf{n} =\left[ \begin{array}{ccc}{f_{y}} & {0} & {0} \\ {0} & {f_{x}} & {0} \\ {-f_{y} c_{x}} & {-f_{x} c_{y}} & {f_{x} f_{y}}\end{array}\right] \mathbf{n} l=Kn= ?fy?0?fy?cx??0fx??fx?cy??00fx?fy?? ?n

l i = c i × d i = ( K C n ) × ( K D n ) = [ f x X C + c x f y Y C + c y 1 ] × [ f x X D + c x f y Y D + c y 1 ] = [ 0 ? 1 ( f y Y C + c y ) 1 0 ? ( f x X C + c x ) ? ( f y Y C + c y ) ( f x X C + c x ) 0 ] [ f x X D + c x f y Y D + c y 1 ] = [ f y ( Y C ? Y D ) f x ( X C ? X D ) f x f y ( X C Y D ? Y C X D ) + f x c y ( X D ? X C ) + f y c x ( Y D ? Y C ) ] = [ f y 0 0 0 f x 0 ? f y c x ? f x c y f x f y ] [ Y D ? Y C X D ? X C X C Y D ? Y C X D ] = [ f y 0 0 0 f x 0 ? f y c x ? f x c y f x f y ] [ X C Y C 1 ] × [ X D Y D 1 ] = K ( C n × D n ) = K n \begin{aligned}{l}^i = c{^i} \times d{^i} &= (KC{^n}) \times (KD{^n}) \\ &=\begin{bmatrix}fxX_C+cx \\ fyY_C+cy \\ 1\end{bmatrix}_{\times}\begin{bmatrix}fxX_D+cx \\ fyY_D+cy \\ 1\end{bmatrix} \\ &=\begin{bmatrix}0 & -1 & (fyY_C+cy) \\ 1 & 0 & -(fxX_C+cx) \\ -(fyY_C+cy) & (fxX_C+cx) & 0 \end{bmatrix}\begin{bmatrix}fxX_D+cx \\ fyY_D+cy \\ 1\end{bmatrix} \\ &=\begin{bmatrix}fy(Y_C-Y_D) \\ fx(X_C-X_D) \\ fxfy(X_CY_D-Y_CX_D)+fxcy(X_D-X_C)+fycx(Y_D-Y_C) \end{bmatrix} \\ &=\begin{bmatrix}fy & 0 & 0 \\ 0 & fx & 0 \\ -fycx & -fxcy & fxfy \end{bmatrix}\begin{bmatrix}Y_D-Y_C \\ X_D-X_C \\ X_CY_D-Y_CX_D \end{bmatrix} \\ &=\begin{bmatrix}fy & 0 & 0 \\ 0 & fx & 0 \\ -fycx & -fxcy & fxfy \end{bmatrix} \begin{bmatrix}X_C \\ Y_C \\ 1 \end{bmatrix}_{\times} \begin{bmatrix}X_D \\ Y_D \\ 1 \end{bmatrix} \\ &=\mathcal{K}(C{^n} \times D{^n}) \\ &=\mathcal{K} \mathbf{n} \end{aligned} li=ci×di?=(KCn)×(KDn)= ?fxXC?+cxfyYC?+cy1? ?×? ?fxXD?+cxfyYD?+cy1? ?= ?01?(fyYC?+cy)??10(fxXC?+cx)?(fyYC?+cy)?(fxXC?+cx)0? ? ?fxXD?+cxfyYD?+cy1? ?= ?fy(YC??YD?)fx(XC??XD?)fxfy(XC?YD??YC?XD?)+fxcy(XD??XC?)+fycx(YD??YC?)? ?= ?fy0?fycx?0fx?fxcy?00fxfy? ? ?YD??YC?XD??XC?XC?YD??YC?XD?? ?= ?fy0?fycx?0fx?fxcy?00fxfy? ? ?XC?YC?1? ?×? ?XD?YD?1? ?=K(Cn×Dn)=Kn?

上式表明,直线的线投影只和法向量有关和方向向量无关。
在这里插入图片描述

关于投影的误差,我们不可以直接从两幅图像的线段中得到,因为同一条直线在不同图像线段的长度和大小都是不一样的。衡量线的投影误差必须从空间中重投影回当前的图像中才能定义误差。在给定世界坐标系下的空间直线 L l w \mathcal{L}^w_l Llw? 和正交表示 O l \mathcal{O}_l Ol? ,我们首先使用外参(这也是我们需要优化求解的东西 T c w = [ R c w p c w 0 1 ] T_{cw} = \left[\begin{matrix}R_{cw} & p_{cw}\\0&1 \end{matrix}\right] Tcw?=[Rcw?0?pcw?1?] 将直线变换到相机归一化平面下的观测 c i c_i ci? 坐标下。然后再将直线利用相机内参投影到成像平面上得到投影线段 l l c i \mathscr{l}_l^{c_i} llci?? ,然后我们就得到了线的投影误差。我们将线的投影误差定义为图像中观测线段的端点到从空间重投影回像素平面的预测直线的距离。

r l ( z L l c i , X ) = [ d ( s l c i , l l c i ) d ( e l c i , l l c i ) ] d ( s , 1 ) = s ? l l 1 2 + l 2 2 \mathbf{r}_{l}\left(\mathbf{z}_{\mathcal{L}_{l}}^{c_{i}}, \mathcal{X}\right)=\left[ \begin{array}{l}{d\left(\mathbf{s}_{l}^{c_{i}}, \mathbf{l}_{l}^{c_{i}}\right)} \\ {d\left(\mathbf{e}_{l}^{c_{i}}, \mathbf{l}_{l}^{c_{i}}\right)}\end{array}\right]\\d(\mathbf{s}, 1)=\frac{\mathbf{s}^{\top} \mathbf{l}}{\sqrt{l_{1}^{2}+l_{2}^{2}}} rl?(zLl?ci??,X)=[d(slci??,llci??)d(elci??,llci??)?]d(s,1)=l12?+l22? ?s?l?

其中 s l c i \mathbf{s}_l^{c_i} slci?? e l c i \mathbf{e}_l^{c_i} elci?? 是图像中观测到的线段端点, l l c i \mathbf{l}_l^{c_i} llci?? 是重投影的预测的直线。

double FeatureManager::reprojection_error( Vector4d obs, Matrix3d Rwc, Vector3d twc, Vector6d line_w ) {

    double error = 0;

    Vector3d n_w, d_w;
    n_w = line_w.head(3);
    d_w = line_w.tail(3);

    Vector3d p1, p2;
    p1 << obs[0], obs[1], 1;
    p2 << obs[2], obs[3], 1;
	// 根据外参将line从世界坐标系转到相机归一化平面坐标系
    Vector6d line_c = plk_from_pose(line_w,Rwc,twc);
    Vector3d nc = line_c.head(3);
    double sql = nc.head(2).norm();
    nc /= sql;

    error += fabs( nc.dot(p1) );
    error += fabs( nc.dot(p2) );
	
    return error / 2.0;
}

这里误差是归一化平面坐标系的误差,因此观测也应该要求是归一化平面,注意中间有个从像素坐标系到归一化平面坐标系的转换,这里没列出来。

误差求解函数在这里

这个函数实际上只用在了外点剔除这里,真正的优化误差求解是在优化器那里定义的。而且感觉这里的实现坐标有点问题?

4.2.误差雅克比推导

如果要优化的话,需要知道误差的雅克比矩阵:

线特征在VIO下根据链式求导法则:

J l = ? r l ? l c i ? l c i ? L c i [ ? L c i ? δ x i ? L c i ? L w ? L w ? δ O ] \mathbf{J}_{l}=\frac{\partial \mathbf{r}_{l}}{\partial \mathbf{l}^{c_{i}}} \frac{\partial \mathbf{l}^{c_{i}}}{\partial \mathcal{L}^{c_{i}}}\left[\frac{\partial \mathcal{L}^{c_{i}}}{\partial \delta \mathbf{x}^{i}} \quad \frac{\partial \mathcal{L}^{c_{i}}}{\partial \mathcal{L}^{w}} \frac{\partial \mathcal{L}^{w}}{\partial \delta \mathcal{O}}\right] Jl?=?lci??rl???Lci??lci??[?δxi?Lci???Lw?Lci???δO?Lw?]

其中第一项 ? r l ? l c i \frac{\partial \mathbf{r}_{l}}{\partial \mathbf{l}^{c_{i}}} ?lci??rl?? ,因为

r l = [ s T l l 1 2 + l 2 2 e T l l 1 2 + l 2 2 ] = [ u s l 1 + v s l 2 l 1 2 + l 2 2 u e l 1 + v e l 2 l 1 2 + l 2 2 ] s = [ u s v s 1 ] e = [ u e v e 1 ] l = [ l 1 l 2 l 3 ] \mathbf{r}_l = \left[ \begin{matrix} \frac{\mathbf{s}^T\mathbf{l} }{\sqrt{l_1^2+l_2^2}} \\ \frac{\mathbf{e}^T\mathbf{l} }{\sqrt{l_1^2+l_2^2}} \end{matrix} \right] = \left[ \begin{matrix} \frac{u_sl_1+v_sl_2 }{\sqrt{l_1^2+l_2^2}} \\ \frac{u_el_1+v_el_2 }{\sqrt{l_1^2+l_2^2}} \end{matrix} \right] \\ \mathbf{s} = \left[\begin{matrix} u_s&v_s&1 \end{matrix} \right] \\ \mathbf{e} = \left[\begin{matrix} u_e&v_e&1 \end{matrix} \right] \\ \mathbf{l} = \left[\begin{matrix} l_1&l_2&l_3 \end{matrix} \right] rl?= ?l12?+l22? ?sTl?l12?+l22? ?eTl?? ?= ?l12?+l22? ?us?l1?+vs?l2??l12?+l22? ?ue?l1?+ve?l2??? ?s=[us??vs??1?]e=[ue??ve??1?]l=[l1??l2??l3??]

所以:

? r l ? l = [ ? r 1 ? l 1 ? r 1 ? l 2 ? r 1 ? l 3 ? r 2 ? l 1 ? r 2 ? l 2 ? r 2 ? l 3 ] = [ ? l 1 s l ? l ( l 1 2 + l 2 2 ) ( 3 2 ) + u s ( l 1 2 + l 2 2 ) ( 1 2 ) ? l 2 s l ? l ( l 1 2 + l 2 2 ) ( 3 2 ) + v s ( l 1 2 + l 2 2 ) ( 1 2 ) 1 ( l 1 2 + l 2 2 ) ( 1 2 ) ? l 1 e l ? l ( l 1 2 + l 2 2 ) ( 3 2 ) + e s ( l 1 2 + l 2 2 ) ( 1 2 ) ? l 2 e l ? l ( l 1 2 + l 2 2 ) ( 3 2 ) + v e ( l 1 2 + l 2 2 ) ( 1 2 ) 1 ( l 1 2 + l 2 2 ) ( 1 2 ) ] 2 × 3 \begin{align} \frac{\partial \mathbf{r}_{l}}{\partial \mathbf{l}} &=\left[ \begin{array}{lll}{\frac{\partial r_{1}}{\partial l_{1}}} & {\frac{\partial r_{1}}{\partial l_{2}}} & {\frac{\partial r_{1}}{\partial l_{3}}} \\ {\frac{\partial r_{2}}{\partial l_{1}}} & {\frac{\partial r_{2}}{\partial l_{2}}} & {\frac{\partial r_{2}}{\partial l_{3}}}\end{array}\right] \\&=\left[\begin{matrix} \frac{-l_{1} \mathbf{s}_{l}^{\top} \mathbf{l}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{3}{2}\right)}}+\frac{u_{s}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{1}{2}\right)}} & \frac{-l_{2} \mathbf{s}_{l}^{\top} \mathbf{l}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{3}{2}\right)}}+\frac{v_{s}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{1}{2}\right)}} & \frac{1}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{1}{2}\right)}} \\ \frac{-l_{1} \mathbf{e}_{l}^{\top} \mathbf{l}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{3}{2}\right)}}+\frac{e_{s}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{1}{2}\right)}} & \frac{-l_{2} \mathbf{e}_{l}^{\top} \mathbf{l}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{3}{2}\right)}}+\frac{v_{e}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{1}{2}\right)}} & \frac{1}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{1}{2}\right)}} \end{matrix}\right]_{2\times3} \end{align} ?l?rl???=[?l1??r1???l1??r2????l2??r1???l2??r2????l3??r1???l3??r2???]= ?(l12?+l22?)(23?)?l1?sl??l?+(l12?+l22?)(21?)us??(l12?+l22?)(23?)?l1?el??l?+(l12?+l22?)(21?)es???(l12?+l22?)(23?)?l2?sl??l?+(l12?+l22?)(21?)vs??(l12?+l22?)(23?)?l2?el??l?+(l12?+l22?)(21?)ve???(l12?+l22?)(21?)1?(l12?+l22?)(21?)1?? ?2×3???

第二项 ? l c i ? L c i \frac{\partial \mathbf{l}^{c_{i}}}{\partial \mathcal{L}^{c_{i}}} ?Lci??lci??(像素坐标到相机归一化坐标,相差一个映射矩阵) ,因为

l = K n L = [ n d ] \mathbf{l} = \mathcal{K}\mathbf{n} \\ \mathcal{L} = \left[\begin{matrix} \mathbf{n} & \mathbf{d}\end{matrix}\right] l=KnL=[n?d?]

所以:

? l c i ? L i c i = [ ? l n ? l d ] = [ K 0 ] 3 × 6 \begin{align} \frac{\partial \mathrm{l}^{c_{i}}}{\partial \mathcal{L}_{i}^{c_{i}}}&=\left[ \begin{matrix} \frac{\partial \mathbf{l}}{\mathbf{n}} &\frac{\partial \mathbf{l}}{\mathbf{d}} \end{matrix} \right] \\&=\left[ \begin{array}{ll}{\mathcal{K}} & {0}\end{array}\right]_{3 \times 6} \end{align} ?Lici???lci???=[n?l??d?l??]=[K?0?]3×6???

最后一项矩阵包含两个部分,一个是相机坐标系下线特征对的旋转和平移的误差导数第二个是直线对正交表示的四个参数增量的导数

第一部分中,

δ x i = [ δ p , δ θ , δ v , δ b a b i , δ b g b i ] \delta \mathbf{x}_{i}=\left[\delta \mathbf{p}, \delta \boldsymbol{\theta}, \delta \mathbf{v}, \delta \mathbf{b}_{a}^{b_{i}}, \delta \mathbf{b}_{g}^{b_{i}}\right] δxi?=[δp,δθ,δv,δbabi??,δbgbi??]

在VIO中,如果要计算线特征的重投影误差,需要将在世界坐标系 w w w 下的线特征变换到IMU坐标系 b b b 下,再用外参数 T b c \bf{T}_{bc} Tbc? 变换到相机坐标系 c c c 下。所以

L c = T b c ? 1 T w b ? 1 L w = T b c ? 1 [ R w b ? ( n w + [ d w ] × p w b ) R w b ? d w ] 6 × 1 \begin{aligned} \mathcal{L}_{c} &=\mathcal{T}_{b c}^{-1} \mathcal{T}_{w b}^{-1} \mathcal{L}_{w} \\ &=\mathcal{T}_{b c}^{-1}\left[ \begin{matrix} \mathbf{R}_{w b}^{\top}\left(\mathbf{n}^{w}+\left[\mathbf{d}^{w}\right] \times \mathbf{p}_{wb}\right)\\ \mathbf{R}_{wb}^{\top}\mathbf{d}^w \end{matrix} \right]_{6 \times 1} \end{aligned} Lc??=Tbc?1?Twb?1?Lw?=Tbc?1?[Rwb??(nw+[dw]×pwb?)Rwb??dw?]6×1??

其中
T b c = [ R b c [ p b c ] × R b c 0 R b c ] T b c ? 1 = [ R b c ? ? R b c ? [ p b c ] × 0 ? R b c ? ] \cal{T}_{bc} = \left[ \begin{array}{cc}{\mathbf{R}_{bc}} & {\left[\mathbf{p}_{bc }\right]_{\times} \mathbf{R}_{bc}} \\ {\mathbf{0}} & {\mathbf{R}_{bc}}\end{array}\right]\\ \cal{T}_{bc}^{-1} = \left[\begin{matrix} \bf{R}_{bc}^{\top} &- \bf{R}_{bc}^{\top} [p_{bc}]_{\times} \\0&\ \bf{R}_{bc}^{\top} \end{matrix}\right] Tbc?=[Rbc?0?[pbc?]×?Rbc?Rbc??]Tbc?1?=[Rbc??0??Rbc??[pbc?]×??Rbc???]
? [ a ] × b = [ b ] × a -[a]_{\times}b=[b]_{\times}a ?[a]×?b=[b]×?a
线特征 L \cal{L} L 只优化状态变量中的位移和旋转,所以只需要对位移和旋转求导,其他都是零。下面我们来具体分析旋转和位移的求导。首先是线特征对旋转的求导

? L c ? δ θ b b ′ = T b c ? 1 [ ? ( I ? [ δ θ b b ′ ] × ) R w b ? ( n w + [ d w ] × p w b ) ? δ θ b b ′ ] ? ( I ? [ δ θ b b ′ ] × ? ) R w b ? d w ? δ θ b b ′ ] = T b c ? 1 [ [ R w b ? ( n w + [ d w ] × p w b ) ] × ] [ R w b ? d w ] × ] 6 × 3 \begin{align} \frac{\partial \mathcal{L}_{c}}{\partial \delta \theta_{b b^{\prime}}} &=\cal{T}_{bc}^{-1}\left[ \begin{array}{c}{\frac{\partial\left(\mathbf{I}-\left[\delta \boldsymbol{\theta}_{b b^{\prime}}\right]_\times\right) \mathbf{R}_{w b}^{\top}\left(\mathbf{n}^{w}+\left[\mathbf{d}^{w}\right]_\times \mathbf{p}_{w b}\right)}{\partial \delta \boldsymbol{\theta}_{b b^{\prime}}} ]} \\ {\frac{\partial\left(\mathbf{I}-\left[\delta \boldsymbol{\theta}_{b b^{\prime}}\right]_{\times}^{\top}\right) \mathbf{R}_{w b}^{\top} \mathbf{d}^{w}}{\partial \delta \boldsymbol{\theta}_{b b^{\prime}}}}\end{array}\right] \\ &=\mathcal{T}_{b c}^{-1} \left[ \begin{array}{c}{\left[\mathbf{R}_{w b}^{\top}\left(\mathbf{n}^{w}+\left[\mathbf{d}^{w}\right]_\times \mathbf{p}_{w b}\right)\right]_\times ]} \\ {\left[\mathbf{R}_{w b}^{\top} \mathbf{d}^{w}\right]_\times}\end{array}\right]_{6 \times 3} \end{align} ?δθbb??Lc???=Tbc?1? ??δθbb??(I?[δθbb?]×?)Rwb??(nw+[dw]×?pwb?)?]?δθbb??(I?[δθbb?]×??)Rwb??dw?? ?=Tbc?1?[[Rwb??(nw+[dw]×?pwb?)]×?][Rwb??dw]×??]6×3???

然后是线特征对位移的求导

? L c ? δ p b b ′ = T b c ? 1 [ ? R w b ? ( n w + [ d w ] × ( p w b + δ p b b ′ ) ) ? δ p b b ′ ? R w b ? d w ? δ p b b ′ ] = T b c ? 1 [ R w b ? [ d w ] × 0 ] 6 × 3 \begin{align} \frac{\partial\cal{L}_c}{\partial\delta \bf{p}_{bb^{\prime}}} &=\mathcal{T}_{b c}^{-1} \left[ \begin{array}{c}{\frac{\partial \mathbf{R}_{w b}^{\top}\left(\mathbf{n}^{w}+\left[\mathbf{d}^{w}\right]_{ \times}\left(\mathbf{p}_{w b}+\delta \mathbf{p}_{b b^{\prime}}\right)\right)}{\partial \delta \mathbf{p}_{b b^{\prime}}}} \\ {\frac{\partial \mathbf{R}_{w b}^{\top} \mathbf{d}^{w}}{\partial \delta \mathbf{p}_{b b^{\prime}}}}\end{array}\right] \\&=\mathcal{T}_{b c}^{-1} \left[ \begin{array}{c}{\mathbf{R}_{w b}^{\top}\left[\mathbf{d}^{w}\right]_{ \times}} \\ {0}\end{array}\right]_{6 \times 3} \end{align} ?δpbb??Lc???=Tbc?1? ??δpbb??Rwb??(nw+[dw]×?(pwb?+δpbb?))??δpbb??Rwb??dw?? ?=Tbc?1?[Rwb??[dw]×?0?]6×3???

第二部分中 ? L c i ? L w ? L w ? δ O \frac{\partial \mathcal{L}^{c_{i}}}{\partial \mathcal{L}^{w}} \frac{\partial \mathcal{L}^{w}}{\partial \delta \mathcal{O}} ?Lw?Lci???δO?Lw? ,先解释第一个 ? L c i ? L w \frac{\partial \mathcal{L}^{c_{i}}}{\partial \mathcal{L}^{w}} ?Lw?Lci??

L c = T w c ? 1 L w \mathcal{L}^c = \mathcal{T}_{wc}^{-1}\mathcal{L}^w Lc=Twc?1?Lw

所以 ? L c i ? L w = T w c ? 1 \frac{\partial\cal{L}^{c_i}}{\partial\cal{L}^w} = \mathcal{T}_{wc}^{-1} ?Lw?Lci??=Twc?1?

然后后面的 ? L w ? δ O \frac{\partial \mathcal{L}^{w}}{\partial \delta \mathcal{O}} ?δO?Lw? 有两种思路,先介绍第一种:

? L w ? δ O = [ ? L w ? ψ 1 ? L w ? ψ 2 ? L w ? ψ 3 ? L w ? ? ] ? L w ? ψ 1 = ? L w ? U ? U ? ψ 1 ? L w ? ? = ? L w ? w ? w ? ? 1 \frac{\partial \mathcal{L}^{w}}{\partial \delta \mathcal{O}} = \left[\begin{matrix} \frac{\partial\cal{L}^w}{\partial \psi_1} & \frac{\partial\cal{L}^w}{\partial \psi_2} & \frac{\partial\cal{L}^w}{\partial \psi_3} & \frac{\partial\cal{L}^w}{\partial \phi} \end{matrix} \right] \\ \frac{\partial \cal{L}^w}{\partial\psi_1} = \frac{\partial\cal{L}^w}{\partial \bf{U}}\frac{\partial \bf{U}}{\partial\psi_1} \\ \frac{\partial \cal{L}^w}{\partial\phi} = \frac{\partial\cal{L}^w}{\partial \bf{w}}\frac{\partial \bf{w}}{\partial\phi_1} ?δO?Lw?=[?ψ1??Lw???ψ2??Lw???ψ3??Lw?????Lw??]?ψ1??Lw?=?U?Lw??ψ1??U????Lw?=?w?Lw???1??w?

其中 L \cal{L} L U \bf{U} U w = [ w 1 , w 2 ] \mathbf{w}=[w_1,w_2] w=[w1?,w2?] 求导,因为 L w = [ w 1 u 1 ? w 2 u 2 ? ] ? \mathcal{L}^w = \left[ \begin{matrix} w_1\bf{u}^{\top}_1&w_2\bf{u}^{\top}_2 \end{matrix}\right]^{\top} Lw=[w1?u1???w2?u2???]? ,所以

? L ? U = [ ? L ? U 1 ? L ? U 2 ? L ? U 3 ] 6 × 9 = [ w 1 ( 3 × 3 ) 0 0 0 w 2 ( 3 × 3 ) 0 ] \begin{align} \frac{\partial\cal{L}}{\partial\bf{U}} &= \left[\begin{matrix} \frac{\partial\cal{L}}{\partial\bf{U}_1} & \frac{\partial\cal{L}}{\partial\bf{U}_2} & \frac{\partial\cal{L}}{\partial\bf{U}_3} \end{matrix}\right]_{6\times9} \\ &=\left[\begin{matrix} w_{1(3\times3)}&0&0\\0&w_{2(3\times3)}&0\end{matrix}\right] \end{align} ?U?L??=[?U1??L???U2??L???U3??L??]6×9?=[w1(3×3)?0?0w2(3×3)??00?]??

? L ? w = [ ? L ? w 1 ? L ? w 2 ] 6 × 2 = [ u 1 0 0 u 2 ] \begin{align} \frac{\partial\cal{L}}{\partial\bf{w}} &= \left[\begin{matrix} \frac{\partial\cal{L}}{\partial w_1} & \frac{\partial\cal{L}}{\partial w_2} \end{matrix}\right]_{6\times2} \\ &=\left[\begin{matrix}\bf{u}_1&0 \\0&\bf{u}_2 \end{matrix}\right] \end{align} ?w?L??=[?w1??L???w2??L??]6×2?=[u1?0?0u2??]??

然后是 U \bf{U} U ψ \psi ψ W \bf{W} W ? \phi ? 的求导,

因为 U ′ ≈ U ( I + [ δ ψ ] × ) \begin{aligned} \mathbf{U}^{\prime} & \approx \mathbf{U}\left(\mathbf{I}+[\delta \psi]_{ \times}\right) \end{aligned} U?U(I+[δψ]×?)? ,所以

[ u 1 u 2 u 3 ] ′ = [ u 1 u 2 u 3 ] + [ u 1 u 2 u 3 ] × δ ψ [ u 1 u 2 u 3 ] ′ ? [ u 1 u 2 u 3 ] δ ψ = [ u 1 u 2 u 3 ] × ? U ? ψ 1 = [ 0 u 3 ? u 2 ] ? U ? ψ 2 = [ ? u 3 0 u 1 ] ? U ? ψ 1 = [ u 2 ? u 1 0 ] ? w ? ? = [ ? w 2 w 1 ] \left[\begin{matrix} \bf{u}_1&\bf{u}_2 & \bf{u}_3 \end{matrix}\right]^{\prime} = \left[\begin{matrix} \bf{u}_1&\bf{u}_2 & \bf{u}_3 \end{matrix}\right] + \left[\begin{matrix} \bf{u}_1&\bf{u}_2 & \bf{u}_3 \end{matrix}\right]_{\times}\delta\psi \\\frac{ \left[\begin{matrix} \bf{u}_1&\bf{u}_2 & \bf{u}_3 \end{matrix}\right]^{\prime} - \left[\begin{matrix} \bf{u}_1&\bf{u}_2 & \bf{u}_3 \end{matrix}\right]}{\delta\psi} = \left[\begin{matrix} \bf{u}_1&\bf{u}_2 & \bf{u}_3 \end{matrix}\right]_{\times}\\ \frac{\partial\bf{U}}{\partial\psi_1} = \left[\begin{matrix} 0&\bf{u}_3 & -\bf{u}_2 \end{matrix}\right]\\ \frac{\partial\bf{U}}{\partial\psi_2} = \left[\begin{matrix} -\bf{u}_3&0 & \bf{u}_1 \end{matrix}\right]\\ \frac{\partial\bf{U}}{\partial\psi_1} = \left[\begin{matrix} \bf{u}_2 & -\bf{u}_1&0 \end{matrix}\right]\\ \frac{\partial\bf{w}}{\partial\phi} = \left[\begin{matrix} -w_2\\w_1 \end{matrix}\right] [u1??u2??u3??]=[u1??u2??u3??]+[u1??u2??u3??]×?δψδψ[u1??u2??u3??]?[u1??u2??u3??]?=[u1??u2??u3??]×??ψ1??U?=[0?u3???u2??]?ψ2??U?=[?u3??0?u1??]?ψ1??U?=[u2???u1??0?]???w?=[?w2?w1??]

所以,可得

? L w ? δ O = [ ? L w ? ψ 1 ? L w ? ψ 2 ? L w ? ψ 3 ? L w ? ? ] = [ ? L w ? U ? U ? ψ 1 ? L w ? U ? U ? ψ 2 ? L w ? U ? U ? ψ 3 ? L w ? w ? w ? ? ] = [ 0 ? w 1 u 3 w 1 u 2 ? w 2 u 1 w 2 u 3 0 ? w 2 u 1 w 1 u 2 ] 6 × 4 \begin{align} \frac{\partial \mathcal{L}^{w}}{\partial \delta \mathcal{O}} &= \left[\begin{matrix} \frac{\partial\cal{L}^w}{\partial \psi_1} & \frac{\partial\cal{L}^w}{\partial \psi_2} & \frac{\partial\cal{L}^w}{\partial \psi_3} & \frac{\partial\cal{L}^w}{\partial \phi} \end{matrix} \right] \\ &= \left[\begin{matrix} \frac{\partial\cal{L}^w}{\partial\bf{U}}\frac{\partial\bf{U}}{\partial \psi_1} & \frac{\partial\cal{L}^w}{\partial\bf{U}}\frac{\partial\bf{U}}{\partial \psi_2} & \frac{\partial\cal{L}^w}{\partial\bf{U}}\frac{\partial\bf{U}}{\partial \psi_3} & \frac{\partial\cal{L}^w}{\partial \bf{w}}\frac{\partial \bf{w}}{\partial \phi} \end{matrix} \right] \\ &=\left[\begin{matrix}0&-w_1\bf{u}_3&w_1\bf{u}_2&-w_2\bf{u}_1\\w_2\bf{u}_3 &0&-w_2\bf{u}_1&w_1\bf{u}_2 \end{matrix} \right]_{6\times4} \end{align} ?δO?Lw??=[?ψ1??Lw???ψ2??Lw???ψ3??Lw?????Lw??]=[?U?Lw??ψ1??U???U?Lw??ψ2??U???U?Lw??ψ3??U???w?Lw????w??]=[0w2?u3???w1?u3?0?w1?u2??w2?u1???w2?u1?w1?u2??]6×4???


4.3.误差雅可比求导简洁版(不含imu坐标系转换)

  • L W L^W LW表示在世界坐标系的表示, L C L^{C} LC表示在相机坐标系下的表示;
  • L n L^n Ln表示归一化平面上的线, L I L^I LI表示在图像坐标系下的线;

图中的 I L I_L IL?表示直线 L \mathcal{L} L在图像平面的投影,所以定义误差项为(就是简单的两个点到直线的距离):

r L = [ r 1 r 2 ] = [ c T I l 1 2 + l 2 2 d T I l 1 2 + l 2 2 ] (15) \mathbf{r_L}=\begin{bmatrix}\mathbf{r_1} \\ \mathbf{r_2} \end{bmatrix} = \begin{bmatrix}\frac{c^TI}{\sqrt{l_1^2+l_2^2}} \\ \frac{d^TI}{\sqrt{l_1^2+l_2^2}} \end{bmatrix} \tag{15} rL?=[r1?r2??]= ?l12?+l22? ?cTI?l12?+l22? ?dTI?? ?(15)

求解Jacobian
跟对3D点的优化问题一样,就是从误差不停的递推到位姿以及直线表示上,用到最最最基本的求导的链式法则:

通用的公式如下:

? r L ? X = ? r L ? L I ? L I ? L n ? L n ? L c { ? L c ? θ ?X= θ ? L c ? t ?X=t ? L c ? L w ? L w ? ( θ , ? ) ?X= L w (16) \frac{\partial \mathbf{r_L}}{\partial X}= \frac{\partial \mathbf{r_L}}{\partial L^{I}} \frac{\partial L^{I}}{\partial L^{n}} \frac{\partial L^{n}}{\partial L^{c}} \begin{aligned} \begin{cases} \frac{\partial L^{c}}{\partial \theta} &\text{ X=}\theta \\ \frac{\partial L^{c}}{\partial t} &\text{ X=t} \\ \frac{\partial L^{c}}{\partial L^{w}}\frac{\partial L^{w}}{\partial{(\theta,\phi)}} &\text{ X=}L^{w} \end{cases} \end{aligned}\tag{16} ?X?rL??=?LI?rL???Ln?LI??Lc?Ln?? ? ???θ?Lc??t?Lc??Lw?Lc??(θ,?)?Lw???X=θ?X=t?X=Lw??(16)

先对前面最通用的部分进行求解:

第一部分:

? r L ? L I = [ ? r 1 ? l 1 ? r 1 ? l 2 ? r 1 ? l 3 ? r 2 ? l 1 ? r 2 ? l 2 ? r 2 ? l 3 ] = [ ? l 1 c T L I ( l 1 2 + l 2 2 ) 3 2 + u c ( l 1 2 + l 2 2 ) 1 2 ? l 2 c T L I ( l 1 2 + l 2 2 ) 3 2 + v c ( l 1 2 + l 2 2 ) 1 2 1 ( l 1 2 + l 2 2 ) 1 2 ? l 1 d T L I ( l 1 2 + l 2 2 ) 3 2 + u d ( l 1 2 + l 2 2 ) 1 2 ? l 2 d T L I ( l 1 2 + l 2 2 ) 3 2 + v d ( l 1 2 + l 2 2 ) 1 2 1 ( l 1 2 + l 2 2 ) 1 2 ] 2 × 3 (17) \begin{aligned} \frac{\partial \mathbf{r_L}}{\partial L^{I}} &= \begin{bmatrix}\frac{\partial{\mathbf{r1}}}{\partial{l_1}} & \frac{\partial{\mathbf{r1}}}{\partial{l_2}} & \frac{\partial{\mathbf{r1}}}{\partial{l_3}} \\ \frac{\partial{\mathbf{r2}}}{\partial{l_1}} & \frac{\partial{\mathbf{r2}}}{\partial{l_2}} & \frac{\partial{\mathbf{r2}}}{\partial{l_3}}\end{bmatrix} \\ &=\begin{bmatrix}\frac{-l_1 c^TL^{I}}{(l_1^2+l_2^2)^{\frac{3}{2}}}+\frac{u_c}{(l_1^2+l_2^2)^{\frac{1}{2}}} & \frac{-l_2 c^TL^{I}}{(l_1^2+l_2^2)^{\frac{3}{2}}}+\frac{v_c}{(l_1^2+l_2^2)^{\frac{1}{2}}} & \frac{1}{(l_1^2+l_2^2)^{\frac{1}{2}}} \\ \frac{-l_1 d^TL^{I}}{(l_1^2+l_2^2)^{\frac{3}{2}}}+\frac{u_d}{(l_1^2+l_2^2)^{\frac{1}{2}}} & \frac{-l_2 d^TL^{I}}{(l_1^2+l_2^2)^{\frac{3}{2}}}+\frac{v_d}{(l_1^2+l_2^2)^{\frac{1}{2}}} & \frac{1}{(l_1^2+l_2^2)^{\frac{1}{2}}} \end{bmatrix}_{2\times 3} \end{aligned} \tag{17} ?LI?rL???=[?l1??r1??l1??r2???l2??r1??l2??r2???l3??r1??l3??r2??]= ?(l12?+l22?)23??l1?cTLI?+(l12?+l22?)21?uc??(l12?+l22?)23??l1?dTLI?+(l12?+l22?)21?ud???(l12?+l22?)23??l2?cTLI?+(l12?+l22?)21?vc??(l12?+l22?)23??l2?dTLI?+(l12?+l22?)21?vd???(l12?+l22?)21?1?(l12?+l22?)21?1?? ?2×3??(17)

其中:

l 1 , l 2 , l 3 l1, l2, l3 l1,l2,l3表示图像坐标系下直线的三个参数;
u c , v c u_c, v_c uc?,vc?表示点 c c c x y xy xy坐标值, u d , v d u_d, v_d ud?,vd?同理;
第二部分:

根据公式(13)可知:

? L I ? L n = K 3 × 3 (18) \frac{\partial L^{I}}{\partial L^{n}}=\mathcal{K}_{3\times3} \tag{18} ?Ln?LI?=K3×3?(18)

第三部分:

由公式(6)和(13)可知,直线的Plucker表示在归一化平面上只用了其中的法向量部分,因此若有 L c = [ n c , d c ] T \mathcal{L{^c}}=\left[\mathbf{n{^c}}, \mathbf{d{^c}}\right]^T Lc=[nc,dc]T,那么 L n = n c \mathcal{L{^n}}=\mathbf{n{^c}} Ln=nc,所以求导有:

? L n ? L c = [ I 3 × 3 0 3 × 3 ] 3 × 6 (19) \frac{\partial L^{n}}{\partial L^{c}}=\begin{bmatrix}\mathbf{I}_{3\times3} & 0_{3\times3}\end{bmatrix}_{3\times6} \tag{19} ?Lc?Ln?=[I3×3??03×3??]3×6?(19)

第四部分就分这几种情况进行讨论:

对于位姿的姿态部分
根据公式(7)有:

? L c ? θ = [ ? n c ? θ ? d c ? θ ] = [ ? ( R w c T ( n w + [ t w c ] × b w ) ) ? θ ? R w c T b w ? θ ] = [ [ R w c T ( n w + [ t w c ] × b w ) ] × [ R w c T b w ] × ] 6 × 3 (20) \frac{\partial L{^c}}{\partial \theta} = \begin{bmatrix}\frac{\partial n_c}{\partial \theta} \\ \frac{\partial d_c}{\partial \theta}\end{bmatrix} = \begin{bmatrix}\frac{\partial{(R_{wc}^T(n_w+[t_{wc}]_{\times}b_w))}}{\partial \theta} \\ \frac{\partial{R_{wc}^Tb_w}}{\partial \theta}\end{bmatrix}=\begin{bmatrix} [R_{wc}^T(n_w+[t_{wc}]_{\times}b_w)]_{\times} \\ [R_{wc}^Tb_w]_{\times} \end{bmatrix}_{6\times3} \tag{20} ?θ?Lc?=[?θ?nc???θ?dc???]=[?θ?(RwcT?(nw?+[twc?]×?bw?))??θ?RwcT?bw???]=[[RwcT?(nw?+[twc?]×?bw?)]×?[RwcT?bw?]×??]6×3?(20)

上述的推导使用了李群的右扰动模型,即 ( R w c E x p ( θ ) ) T = E x p ( ? θ ) R w c T (R_{wc}Exp(\theta))^T=Exp(-\theta)R_{wc}^T (Rwc?Exp(θ))T=Exp(?θ)RwcT?

对于位姿的位移部分
同样根据公式(7)有:

? L c ? t = [ ? n c ? t ? d c ? t ] = [ ? ( R w c T ( n w + [ t w c ] × b w ) ) ? t ? R w c T b w ? t ] = [ ? R w c T [ b w ] × 0 ] 6 × 3 (21) \frac{\partial L{^c}}{\partial t} = \begin{bmatrix}\frac{\partial n_c}{\partial t} \\ \frac{\partial d_c}{\partial t}\end{bmatrix} = \begin{bmatrix}\frac{\partial{(R_{wc}^T(n_w+[t_{wc}]_{\times}b_w))}}{\partial t} \\ \frac{\partial{R_{wc}^Tb_w}}{\partial t}\end{bmatrix}=\begin{bmatrix} -R_{wc}^T[b_{w}]_{\times} \\ \mathbf{0} \end{bmatrix}_{6\times3} \tag{21} ?t?Lc?=[?t?nc???t?dc???]=[?t?(RwcT?(nw?+[twc?]×?bw?))??t?RwcT?bw???]=[?RwcT?[bw?]×?0?]6×3?(21)

对于世界坐标系下直线表示部分
这部分按照公式(16)的步骤,依旧分两个部分:

? L c ? L w \frac{\partial L^{c}}{\partial L^{w}} ?Lw?Lc?部分:
? L c ? L w = [ ? n C ? n W ? n C ? b W ? d C ? n W ? d C ? b W ] = [ R w c T R w c T [ t w c ] × 0 R w c T ] (22) \frac{\partial L^{c}}{\partial L^{w}}= \begin{bmatrix} \frac{\partial{\mathbf{n^C}}}{\partial{\mathbf{n^W}}} & \frac{\partial{\mathbf{n^C}}}{\partial{\mathbf{b^W}}} \\ \frac{\partial{\mathbf{d^C}}}{\partial{\mathbf{n^W}}} & \frac{\partial{\mathbf{d^C}}}{\partial{\mathbf{b^W}}} \end{bmatrix} = \left[\begin{array}{cc} \mathrm{R}_{wc}^{T} & {\mathrm{R}_{wc}^{T}\left[\mathbf{t}_{wc}\right]_{\times} } \\ \mathbf{0} & \mathrm{R}_{wc}^T \end{array}\right] \tag{22} ?Lw?Lc?=[?nW?nC??nW?dC???bW?nC??bW?dC??]=[RwcT?0?RwcT?[twc?]×?RwcT??](22)
? L w ? ( θ , ? ) \frac{\partial L^{w}}{\partial(\theta, \phi)} ?(θ,?)?Lw?部分,这部分其实还可以继续分,如下:
? L w ? ( θ , ? ) = [ ? L w ? θ , ? L w ? ? ] = [ ? L w ? U ? U ? θ , ? L w ? W ? W ? ? ] \frac{\partial L^{w}}{\partial(\theta, \phi)}= \left[\frac{\partial L^{w}}{\partial \theta}, \frac{\partial L^{w}}{\partial \phi}\right]= \left[\frac{\partial L^{w}}{\partial{U}}\frac{\partial{U}}{\partial \theta}, \frac{\partial L^{w}}{\partial{W}}\frac{\partial{W}}{\partial \phi}\right] ?(θ,?)?Lw?=[?θ?Lw?,???Lw?]=[?U?Lw??θ?U?,?W?Lw????W?]第一部分
? L w ? U ? U ? θ = ? [ w 1 u 1 w 2 u 2 ] ? [ u 1 , u 2 , u 3 ] ? [ u 1 , u 2 , u 3 ] ? θ = [ w 1 0 0 0 w 2 0 ] 6 × 9 [ 0 ? u 3 u 2 u 3 0 ? u 1 ? u 2 u 1 0 ] 9 × 3 = [ 0 ? w 1 u 3 w 1 u 2 ? w 2 u 3 0 ? w 2 u 1 ] 6 × 3 (23) \begin{aligned} \frac{\partial L^{w}}{\partial{U}}\frac{\partial{U}}{\partial \theta}&=\frac{\partial{\begin{bmatrix} w1\mathbf{u_1} \\ w2\mathbf{u_2} \end{bmatrix}}}{\partial{[\mathbf{u_1},\mathbf{u_2}, \mathbf{u_3}]}}\frac{\partial{[\mathbf{u_1},\mathbf{u_2}, \mathbf{u_3}]}}{\partial{\theta}} \\ &=\begin{bmatrix}w1 & 0 & 0 \\ 0 & w2 & 0 \end{bmatrix}_{6\times9} \begin{bmatrix}0 & -\mathbf{u3} & \mathbf{u2} \\ \mathbf{u3} & 0 & -\mathbf{u1} \\ -\mathbf{u2} & \mathbf{u1} & 0 \end{bmatrix}_{9\times3} \\ &= \begin{bmatrix} 0 & -w1\mathbf{u3} & w1\mathbf{u2} \\ -w2\mathbf{u3} & 0 & -w2\mathbf{u1} \end{bmatrix}_{6\times3} \end{aligned} \tag{23} ?U?Lw??θ?U??=?[u1?,u2?,u3?]?[w1u1?w2u2??]??θ?[u1?,u2?,u3?]?=[w10?0w2?00?]6×9? ?0u3?u2??u30u1?u2?u10? ?9×3?=[0?w2u3??w1u30?w1u2?w2u1?]6×3??(23) 第二部分
? L w ? W ? W ? ? = ? [ w 1 u 1 w 2 u 2 ] ? [ w 1 , w 2 ] T ? [ w 1 , w 2 ] T ? ? = [ u 1 0 0 u 2 ] 6 × 2 [ ? w 2 w 1 ] 2 × 1 = [ ? w 2 u 1 w 1 u 2 ] 6 × 1 (24) \begin{aligned} \frac{\partial L^{w}}{\partial{W}}\frac{\partial{W}}{\partial \phi}&=\frac{\partial{\begin{bmatrix} w1\mathbf{u_1} \\ w2\mathbf{u_2} \end{bmatrix}}}{\partial{[w1, w2]^T}}\frac{\partial{[w1, w2]^T}}{\partial{\phi}} \\ &=\begin{bmatrix}\mathbf{u1} & 0 \\ 0 & \mathbf{u2} \end{bmatrix}_{6\times2} \begin{bmatrix} -w2 \\ w1 \end{bmatrix}_{2\times1} \\ &= \begin{bmatrix} -w2\mathbf{u1} \\ w1\mathbf{u2}\end{bmatrix}_{6\times1} \end{aligned} \tag{24} ?W?Lw????W??=?[w1,w2]T?[w1u1?w2u2??]????[w1,w2]T?=[u10?0u2?]6×2?[?w2w1?]2×1?=[?w2u1w1u2?]6×1??(24) 其中 w 1 = c o s ( ? ) , w 2 = s i n ( ? ) w1=cos(\phi), w2=sin(\phi) w1=cos(?),w2=sin(?)
两个部分合起来为:
? L w ? ( θ , ? ) = [ R w c T R w c T [ t w c ] × 0 R w c T ] 6 × 6 [ 0 ? w 1 u 3 w 1 u 2 ? w 2 u 1 ? w 2 u 3 0 ? w 2 u 1 w 1 u 2 ] 6 × 4 (25) \frac{\partial L^{w}}{\partial(\theta, \phi)}= \left[\begin{array}{cc} \mathrm{R}_{wc}^{T} & {\mathrm{R}_{wc}^{T}\left[\mathbf{t}_{wc}\right]_{\times} } \\ \mathbf{0} & \mathrm{R}_{wc}^T \end{array}\right]_{6\times6} \begin{bmatrix} 0 & -w1\mathbf{u3} & w1\mathbf{u2} & -w2\mathbf{u1} \\ -w2\mathbf{u3} & 0 & -w2\mathbf{u1} & w1\mathbf{u2} \end{bmatrix}_{6\times4} \tag{25} ?(θ,?)?Lw?=[RwcT?0?RwcT?[twc?]×?RwcT??]6×6?[0?w2u3??w1u30?w1u2?w2u1??w2u1w1u2?]6×4?(25)

最后就是上述推导过程中确实有很多地方向量的notation没有统一,可能有些比较容易混淆,这里确实是因为各个论文的表示不太一样,导致写公式的时候不太一样,自己又偷了个懒,不过该注释的地方都进行了注释。目前比较流行的表示应该是 L = [ n , d ] T L=[\mathbf{n}, \mathbf{d}]^T L=[n,d]T 或者 L = [ n , v ] T L=[\mathbf{n}, \mathbf{v}]^T L=[n,v]T ,其中 n \mathbf{n} n 表示法向量, d \mathbf{d} d 或者 v \mathbf{v} v 表示方向向量。


4.4.相关代码

优化入口,ceres,主要实现在这里

  • todo:导数填充

文章来源:https://blog.csdn.net/fb_941219/article/details/135044176
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。