Data Mining数据挖掘—5. Association Analysis关联分析

2023-12-13 13:24:51

6. Association Analysis

Given a set of records each of which contains some number of items from a given collection.
Produce dependency rules that will predict the occurrence of an item based on occurrences of other items.
Application area: Marketing and Sales Promotion, Content-based recommendation, Customer loyalty programs

Initially used for Market Basket Analysis to find how items purchased by customers are related. Later extended to more complex data structures: sequential patterns and subgraph patterns

6.1 Simple Approach: Pearson’s correlation coefficient

Pearson's correlation coefficient in Association Analysis

correlation not equals to causality

6.2 Definitoin

6.2.1 Frequent Itemset

Frequent Itemset

6.2.2 Association Rule

Association Rule

6.2.3 Evaluation Metrics

Evaluation Metrics

6.3 Associate Rule Mining Task

Given a set of transactions T, the goal of association rule mining is to find all rules having
– support ≥ minsup threshold
– confidence ≥ minconf threshold
minsup and minconf are provided by the user
Brute-force approach
Step1: List all possible association rules
Step2: Compute the support and confidence for each rule
Step3: Remove rules that fail the minsup and minconf thresholds

But Computationally prohibitive due to large number of candidates!

Brute-force Approach

Mining Association Rules

6.4 Apriori Algorithm

Two-step approach
Step1: Frequent Itemset Generation (Generate all itemsets whose support ≥ minsup)
Step2: Rule Generation (Generate high confidence rules from each frequent itemset; where each rule is a binary partitioning of a frequent itemset)

However, frequent itemset generation is still computationally expensive… Given d items, there are 2^d candidate itemsets!

Anti-Monotonicity of Support
Anti-Monotonicity of Support

Steps

  1. Start at k=1
  2. Generate frequent itemsets of length k=1
  3. Repeat until no new frequent itemsets are identified
    1. Generate length (k+1) candidate itemsets from length k frequent itemsets; increase k
    2. Prune candidate itemsets that cannot be frequent because they contain subsets of length k that are infrequent (Apriori Principle)
    3. Count the support of each remaining candidate by scanning the DB
    4. Eliminate candidates that are infrequent, leaving only those that are frequent

Illustrating the Apriori Principle

From Frequent Itemsets to Rules
From Frequent Itemsets to Rules

Challenge: Combinatorial Explosion1
Challenge: Combinatorial Explosion2

Rule Generation

Rule Generation for Apriori Algorithm

Complexity of Apriori Algorithm
Complexity of Apriori Algorithm

6.5 FP-growth Algorithm

usually faster than Apriori, requires at most two passes over the database
Use a compressed representation of the database using an FP-tree
Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets
FP-Tree Construction

FP-Tree Construction

FP-Growth(Summary)

6.6 Interestingness Measures

Interestingness measures can be used to prune or rank the derived rules
In the original formulation of association rules, support & confidence are the only interest measures used
various other measures have been proposed

Drawback of Confidence
Drawback of Confidence1

Drawback of Confidence2

6.6.1 Correlation

Correlation takes into account all data at once.
In our scenario: corr(tea,coffee) = -0.25
i.e., the correlation is negative
Interpretation: people who drink tea are less likely to drink coffee

6.6.2 Lift

Lift1

Lift2

Example: Lift

lift and correlation are symmetric [lift(tea → coffee) = lift(coffee → tea)]
confidence is asymmetric

6.6.3 Others

6.7 Handling Continuous and Categorical Attributes

6.7.1 Handling Categorical Attributes

Transform categorical attribute into asymmetric binary variables. Introduce a new “item” for each distinct attribute-value pair -> one-hot-encoding
Potential Issues
(1) Many attribute values
Many of the attribute values may have very low support
Potential solution: Aggregate the low-support attribute values -> bin for “other”
(2) Highly skewed attribute values
Example: 95% of the visitors have Buy = No
Most of the items will be associated with (Buy=No) item
Potential solution: drop the highly frequent items

6.7.2 Handling Continuous Attributes

Transform continuous attribute into binary variables using discretization:
Equal-width binning & Equal-frequency binning
Issue: Size of the intervals affects support & confidence - Too small intervals: not enough support but Too large intervals: not enough confidence

6.8 Effect of Support Distribution

Many real data sets have a skewed support distribution
How to set the appropriate minsup threshold?
If minsup is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
If minsup is set too low, it is computationally expensive and the number of itemsets is very large
Using a single minimum support threshold may not be effective
Multiple Minimum Support
Multiple Minimum Support

6.9 Association Rules with Temporal Components

Association Rules with Temporal Components

6.10 Subgroup Discovery

Association Rule Mining: Find all patterns in the data
Classification: Identify the best patterns that can predict a target variable
Subgroup Discovery: Find all patterns that can explain a target variable.
从数据集中发现具有特定属性和特征的子群或子集。这个任务的目标是识别数据中与感兴趣的属性或行为相关的子群,以便更深入地理解数据、做出预测或采取相关行动。在某些情况下,子群发现可以用于生成新的特征,然后将这些特征用于分类任务。
子群发现旨在发现数据中的子群,而分类旨在将数据分为已知的类别。子群发现通常更加探索性,而分类通常更加预测性。
we have strong predictor variables. But we are also interested in the weaker ones

Algorithms
Early algorithms: Learn unpruned decision tree; Extract rule; Compute measures for rules, rate and rank
Newer algorithms: Based on association rule mining; Based on evolutionary algorithms

Rating Rules
Goals: rules should be covering many examples & Accurate
Rules of both high coverage and accuracy are interesting

Subgroup Discovery – Rating Rules

Subgroup Discovery – Metrics
Subgroup Discovery – Metrics

WRacc1

WRacc2

WRacc3

Subgroup Discovery – Summary

6.11 Summary

Association AnalysisApriori & FP-GrowthSubgroup Discovery
discovering patterns in data; patterns are described by rulesFinds rules with minimum support (i.e., number of transactions) and minimum confidence (i.e., strength of the implication)Learn rules for a particular target variable; Create a comprehensive model of a class

文章来源:https://blog.csdn.net/weixin_45012798/article/details/134888297
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。