【经典LeetCode算法题目专栏分类】【第4期】BFS广度优先算法:单词接龙、最小基因变化、二进制矩阵中的最短路径
《博主简介》
小伙伴们好,我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。
?更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!
一般涉及到最小层数问题,要想到BFS。只要找到第一个符合条件的就是最小层数。
单词接龙
#?单向BFS class?Solution: ????def?ladderLength(self,?beginWord:?str,?endWord:?str,?wordList:?List[str])?->?int: ????????queue =?[(beginWord,?1)] ????????word_list =?[?chr(ord('a')?+?i)?for?i in?range(27)] ????????wordList =?set(wordList) ????????n =?len(beginWord) ????????while?queue: ????????????word,?step =?queue.pop(0) ????????????if?word ==?endWord: ????????????????return?step ????????????for?i in?range(n): ????????????????for?c in?word_list: ????????????????????tmp =?word[:i]?+?c +?word[i+1:] ????????????????????if?tmp in?wordList: ????????????????????????wordList.remove(tmp) ????????????????????????queue.append((tmp,?step +?1)) ????????return?0 # 双向BFS class?Solution: ????def?ladderLength(self,?beginWord:?str,?endWord:?str,?wordList:?List[str])?->?int: ????????#?双向BFS ????????word_set?=?set(wordList) ????????if?len(word_set)?==?0?or?endWord?not?in?word_set: ????????????return?0 ????????if?beginWord?in?word_set: ????????????word_set.remove(beginWord) ????????visited?=?set() ????????visited.add(beginWord) ????????visited.add(endWord) ????????begin_visited?=?set() ????????begin_visited.add(beginWord) ????????end_visited?=?set() ????????end_visited.add(endWord) ????????word_len?=?len(beginWord) ????????step?=?1 ????????#?简化成?while?begin_visited?亦可 ????????while?begin_visited?and?end_visited: ????????????if?len(begin_visited)?>?len(end_visited): ????????????????begin_visited,?end_visited?=?end_visited,?begin_visited ????????????next_level_visited?=?set() ????????????for?word?in?begin_visited: ????????????????word_list?=?list(word) ????????????????for?j?in?range(word_len): ????????????????????origin_char?=?word_list[j] ????????????????????for?k?in?range(26): ????????????????????????word_list[j]?=?chr(ord('a')?+?k) ????????????????????????next_word?=?''.join(word_list) ????????????????????????if?next_word?in?word_set: ????????????????????????????if?next_word?in?end_visited: ????????????????????????????????return?step?+?1 ????????????????????????????if?next_word?not?in?visited: ????????????????????????????????next_level_visited.add(next_word) ????????????????????????????????visited.add(next_word) ????????????????????word_list[j]?=?origin_char ????????????begin_visited?=?next_level_visited ????????????step?+=?1 ????????return?0 |
单词接龙2
单向遍历 class?Solution: ????def?findLadders(self,?beginWord:?str,?endWord:?str,?wordList:?List[str])?->?List[List[str]]: ????????tree,?words,?n =?collections.defaultdict(set),?set(wordList),?len(beginWord)? ????????if?endWord not?in?wordList:?return?[] ????????# found为是否找到最短路径的标识默认False ????????# q存储当前层的单词, nq存储下一层的单词 ????????# tree[x]会记录单词x所有相邻节点的单词,即可能到达最终结果的路径 ????????found,?q,?nq =?False,?{beginWord},?set() ????????while?q and?not?found:?# 当找到路径或者队列中没有元素时结束 ????????????words -=?set(q)?# 从words列表中去除当前层的单词,避免重复使用 ????????????for?x in?q:?# 遍历当前层的所有单词 ????????????????for?y in?[x[:i]+c+x[i+1:]?for?i in?range(n)?for?c in?'qwertyuiopasdfghjklzxcvbnm']:?# 改变当前单词的每一个字符 ????????????????????if?y in?words:?# 只关心在words集合中的单词 ????????????????????????if?y ==?endWord:?# 如果找到了,将found置为True,不会再继续寻找下一层. ????????????????????????????found =?True ????????????????????????else:? ????????????????????????????nq.add(y)?# 准备下一层的单词集合 ????????????????????????tree[x].add(y)?# 记录x单词满足条件的下一个路径 ????????????q,?nq =?nq,?set()?# 重新复制q与nq, q为下一次循环需遍历的单词集合,nq置为空 ????????def?bt(x):? ????????????# 递归,在tree中寻找满足条件的路径 ????????????# for y in tree[x] 遍历当前单词的相邻节点 ????????????return?[[x]]?if?x ==?endWord else?[[x]?+?rest for?y in?tree[x]?for?rest in?bt(y)] ????????if?found ==?False: ????????????return?[] ????????return?bt(beginWord) #?双向遍历 class?Solution: ????def?findLadders(self,?beginWord:?str,?endWord:?str,?wordList:?List[str])?->?List[List[str]]: ????????# 双向BFS ????????tree,?words,?n =?collections.defaultdict(set),?set(wordList),?len(beginWord) ????????if?endWord not?in?wordList:?return?[] ????????found,?bq,?eq,?nq,?rev =?False,?{beginWord},?{endWord},?set(),?False ????????while?bq and?not?found: ????????????words -=?set(bq) ????????????for?x in?bq: ????????????????for?y in?[x[:i]+c+x[i+1:]?for?i in?range(n)?for?c in?'qwertyuiopasdfghjklzxcvbnm']: ????????????????????if?y in?words: ????????????????????????if?y in?eq:? ????????????????????????????found =?True ????????????????????????else:? ????????????????????????????nq.add(y) ????????????????????????tree[y].add(x)?if?rev else?tree[x].add(y) ????????????bq,?nq =?nq,?set() ????????????if?len(bq)?>?len(eq):? ????????????????bq,?eq,?rev =?eq,?bq,?not?rev ????????def?bt(x):? ????????????return?[[x]]?if?x ==?endWord else?[[x]?+?rest for?y in?tree[x]?for?rest in?bt(y)] ????????return?bt(beginWord) |
最小基因变化
class?Solution: ????def?minMutation(self,?start:?str,?end:?str,?bank:?List[str])?->?int: ????????#BFS ????????possible_dict =?{ ????????????????????????"A":?"CGT", ????????????????????????"C":?"AGT", ????????????????????????"G":?"ACT", ????????????????????????"T":?"ACG" ????????????????????} ????????queue=[(start,0)] ????????while?queue: ????????????# 广度优先遍历模板 ????????????(word,?step)=queue.pop(0) ????????????if?word ==end: ????????????????return?step ???????????? ????????????for?i,?c ?in?enumerate(word): ????????????????for?p in?possible_dict[c]: ????????????????????# 从第0个位置开始匹配新的字符串 ????????????????????temp=word[:i]+p+word[i+1:] ????????????????????# 在bank里面就处理(set中in操作复杂度是0(1)) ????????????????????if?temp in?bank:? ????????????????????????# 从bank里移除,避免重复计数 ????????????????????????bank.remove(temp)?? ????????????????????????# 加入队列,步数加1 ????????????????????????queue.append((temp,step+1))? ????????return?-1 |
二进制矩阵中的最短路径
class?Solution: ????def?shortestPathBinaryMatrix(self,?grid:?List[List[int]])?->?int: ????????# BFS ????????n =?len(grid) ????????if?grid[n-1][n-1]?==?1?or?grid[0][0]?==?1: ????????????return?-1 ????????queue =?[(0,0)] ????????length =?1 ????????visited =?set() ????????visited.add((0,0)) ????????while?queue: ????????????cur_nums =?len(queue) ????????????for?i in?range(cur_nums): ????????????????i,j =?queue.pop(0) ????????????????if?i ==?n-1?and?j ==?n-1: ????????????????????return?length ????????????????for?ni,nj in?[(i-1,j-1),(i-1,j),(i-1,j+1),(i,j-1),(i,j+1),(i+1,j-1),(i+1,j),(i+1,j+1)]: ????????????????????if?0<=?ni <?n and?0<=?nj <?n and?(ni,nj)?not?in?visited and?grid[ni][nj]?==?0: ????????????????????????visited.add((ni,nj)) ????????????????????????queue.append((ni,nj)) ????????????length +=?1 ????????return?-1 |
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!
觉得不错的小伙伴,感谢点赞、关注加收藏哦!
欢迎关注下方GZH:阿旭算法与机器学习,共同学习交流~
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!