logits后面接softmax的作用

2023-12-21 23:30:29

在深度学习中,将Logits(逻辑值)输入 softmax 函数的主要目的是将原始的未经处理的分数转换为概率分布。Softmax 函数能够将Logits转化为归一化的概率值,使得每个类别的分数都在0到1之间,且所有类别的概率之和等于1。

Softmax 函数的表达式如下:

其中,z _{i}是Logits中第i 个元素,\sigma \left ( z \right )_{i}是Softmax 函数的输出,表示第i个类别的概率。

通过Softmax,原始的Logits中较大的值会被映射到更大的概率,而较小的值则对应较小的概率。这样的转换使得模型的输出更易于解释,可以用于多分类问题的决策和预测。

在分类任务中,通常会选择具有最高概率的类别作为最终的预测结果。Softmax 的使用也有助于模型训练,因为它引入了梯度信息,使得模型更容易进行反向传播优化。

文章来源:https://blog.csdn.net/danger2/article/details/135134995
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。