文本转图像 学习笔记

2023-12-13 04:00:34

VQGAN (Vector Quantized Generative Adversarial Network) 是一种基于 GAN 的生成模型,可以将图像或文本转换为高质量的图像。

VQ (Vector Quantization)是一种数据压缩技术,是指将连续数据表示为离散化的向量。输入的图像或文本被映射到 VQ 空间中的离散化向量表示,然后,离散化向量然后被送到 GAN 模型中进行图像生成。(参见上图的下半部分)在训练过程中,VQGAN 模型会优化两个损失函数:一个用于量化误差(即离散化向量和连续值之间的误差),另一个用于生成器和判别器之间的对抗损失。
GAN 是由生成器和判别器两个模型组成的,生成器负责生成图像,判别器负责判断生成的图像是否为真实的图像。在训练过程中,生成器和判别器相互博弈,不断优化各自的参数,以使生成的图像更接近真实图像。

原文链接:https://blog.csdn.net/qq_42208244/article/details/132889927

VQGAN理论加代码一对一详解,小白向解析-CSDN博客

文章来源:https://blog.csdn.net/jacke121/article/details/134889797
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。