助力智能车损计算,基于高精度YOLOv8开发构建智能化车辆受损区域分割检测识别分析系统
车辆受损评估本身有专业的评估流程,本文并不是要探究这块的内容,而是想要通过技术手段来对车辆受损区域的面积做自动化的计算,在前面的博文中我们已经有了相关的开发实践了,感兴趣的话可以自行移步阅读即可:
《基于yolov5-v7.0开发构建汽车车损实例分割检测识别分析系统》
《基于轻量级YOLOv5+Transformer的汽车车损检测识别分析系统》
前面的工作主要是进行了车损的检测和分割,而没有再做后面的计算分析工作,本文的主要目的就是考虑以最新的YOLOv8系列的模型来开发构建更高精度的分割检测系统,首先看下实例效果:
本文使用到的数据集与前文相同,如下:
训练数据配置如下:
# Dataset
path: ./dataset
train:
- /data/chesun/dataset/images/train
val:
- /data/chesun/dataset/images/test
test:
- /data/chesun/dataset/images/test
# Classes
names:
0: chesun
这里我们主要是选用了n、s和m三个不同量级的模型来开发构建不同参数量级的分割模型。
模型配置文件如下所示:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
等待训练完成后我们来整体对不同参数量级的模型进行对比可视化。
【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。
纵向对比结果如下:
【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。
纵向对比结果如下:
【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个
上面是所有模型的对比信息,下面我们单独拎出来纵向对比结果:
感觉跟我的数据量过少有关系,只有两百张左右的数据集,n系列的模型居然效果优于s和m系列的模型。
最后我们对mAP指标也进行可视化,如下所示:
这里我们将对应的分割结果存储为结构化数据,如下:
{"chesun": [[[585728, 123904], [584704, 125952], [573440, 125952], [571392, 126976], [569344, 126976], [565248, 132096], [563200, 132096], [558080, 137216], [557056, 137216], [555008, 139264], [552960, 139264], [551936, 140288], [549888, 140288], [546816, 143360], [544768, 143360], [544768, 145408], [541696, 148480], [541696, 150528], [540672, 151552], [540672, 153600], [536576, 156672], [536576, 158720], [533504, 161792], [532480, 161792], [510976, 183296], [510976, 184320], [505856, 189440], [505856, 191488], [491520, 205824], [491520, 207872], [486400, 212992], [486400, 214016], [479232, 221184], [479232, 222208], [478208, 224256], [478208, 225280], [473088, 230400], [473088, 232448], [471040, 233472], [471040, 235520], [464896, 241664], [464896, 243712], [461824, 246784], [461824, 248832], [458752, 251904], [458752, 253952], [456704, 254976], [456704, 257024], [454656, 258048], [454656, 265216], [453632, 266240], [453632, 271360], [451584, 273408], [451584, 284672], [450560, 286720], [450560, 290816], [448512, 292864], [448512, 295936], [445440, 299008], [445440, 301056], [440320, 306176], [440320, 307200], [438272, 309248], [438272, 311296], [437248, 312320], [437248, 315392], [435200, 317440], [435200, 319488], [434176, 320512], [434176, 322560], [432128, 323584], [432128, 327680], [430080, 328704], [430080, 330752], [429056, 331776], [429056, 333824], [427008, 335872], [427008, 339968], [425984, 342016], [425984, 345088], [423936, 347136], [423936, 348160], [421888, 350208], [421888, 355328], [420864, 356352], [420864, 377856], [418816, 379904], [418816, 401408], [420864, 402432], [420864, 475136], [421888, 476160], [421888, 491520], [423936, 492544], [423936, 502784], [425984, 503808], [425984, 528384], [423936, 530432], [423936, 581632], [421888, 582656], [421888, 607232], [423936, 609280], [423936, 615424], [425984, 617472], [425984, 623616], [427008, 625664], [427008, 631808], [429056, 633856], [429056, 634880], [430080, 636928], [430080, 642048], [432128, 643072], [432128, 645120], [434176, 647168], [434176, 650240], [435200, 651264], [435200, 653312], [437248, 655360], [437248, 658432], [438272, 659456], [438272, 664576], [440320, 666624], [440320, 667648], [442368, 669696], [442368, 671744], [443392, 672768], [443392, 675840], [445440, 677888], [445440, 680960], [446464, 683008], [446464, 684032], [448512, 686080], [448512, 688128], [450560, 689152], [450560, 692224], [451584, 694272], [451584, 696320], [453632, 697344], [453632, 699392], [454656, 700416], [454656, 702464], [456704, 704512], [456704, 705536], [458752, 707584], [458752, 708608], [459776, 710656], [459776, 712704], [461824, 713728], [461824, 715776], [462848, 716800], [462848, 718848], [466944, 721920], [466944, 723968], [471040, 729088], [471040, 730112], [476160, 735232], [476160, 737280], [478208, 738304], [478208, 740352], [484352, 746496], [484352, 748544], [487424, 751616], [487424, 753664], [489472, 754688], [489472, 756736], [491520, 757760], [491520, 759808], [494592, 762880], [494592, 764928], [495616, 765952], [495616, 768000], [497664, 770048], [497664, 773120], [499712, 774144], [499712, 779264], [500736, 781312], [500736, 790528], [502784, 792576], [502784, 808960], [500736, 811008], [500736, 828416], [499712, 830464], [499712, 838656], [497664, 839680], [497664, 849920], [495616, 851968], [495616, 863232], [494592, 864256], [494592, 880640], [495616, 882688], [495616, 887808], [503808, 896000], [505856, 896000], [507904, 897024], [508928, 897024], [510976, 899072], [517120, 899072], [519168, 897024], [530432, 897024], [532480, 899072], [535552, 899072], [536576, 901120], [540672, 901120], [541696, 902144], [551936, 902144], [552960, 904192], [555008, 904192], [560128, 909312], [560128, 912384], [561152, 913408], [561152, 915456], [563200, 917504], [563200, 918528], [565248, 920576], [565248, 923648], [566272, 925696], [566272, 926720], [568320, 928768], [568320, 929792], [569344, 931840], [569344, 934912], [571392, 936960], [571392, 937984], [573440, 940032], [573440, 942080], [574464, 943104], [574464, 945152], [576512, 946176], [576512, 951296], [577536, 953344], [577536, 954368], [579584, 956416], [579584, 961536], [581632, 962560], [581632, 970752], [582656, 972800], [585728, 972800], [587776, 974848], [718848, 974848], [720896, 972800], [727040, 972800], [729088, 970752], [730112, 970752], [735232, 966656], [735232, 964608], [737280, 962560], [738304, 962560], [751616, 950272], [751616, 948224], [753664, 946176], [753664, 945152], [754688, 943104], [754688, 942080], [757760, 937984], [757760, 934912], [759808, 933888], [759808, 931840], [761856, 929792], [761856, 926720], [762880, 925696], [762880, 921600], [764928, 920576], [764928, 917504], [765952, 915456], [765952, 912384], [768000, 910336], [768000, 909312], [770048, 907264], [770048, 905216], [771072, 904192], [771072, 902144], [773120, 901120], [773120, 899072], [778240, 893952], [778240, 892928], [781312, 888832], [781312, 887808], [782336, 885760], [782336, 884736], [786432, 880640], [786432, 879616], [787456, 877568], [787456, 874496], [789504, 872448], [789504, 866304], [790528, 864256], [790528, 851968], [792576, 849920], [792576, 823296], [794624, 822272], [794624, 815104], [795648, 814080], [795648, 800768], [797696, 798720], [797696, 790528], [798720, 789504], [798720, 779264], [800768, 778240], [800768, 770048], [802816, 768000], [802816, 759808], [803840, 757760], [803840, 753664], [805888, 751616], [805888, 748544], [806912, 746496], [806912, 743424], [812032, 738304], [812032, 737280], [814080, 735232], [814080, 733184], [815104, 732160], [815104, 729088], [817152, 727040], [817152, 724992], [819200, 723968], [819200, 721920], [820224, 720896], [820224, 718848], [822272, 716800], [822272, 715776], [823296, 713728], [823296, 712704], [825344, 710656], [825344, 705536], [827392, 704512], [827392, 700416], [828416, 699392], [828416, 696320], [830464, 694272], [830464, 686080], [831488, 684032], [831488, 671744], [833536, 669696], [833536, 648192], [835584, 647168], [835584, 541696], [836608, 540672], [836608, 519168], [835584, 517120], [835584, 481280], [833536, 479232], [833536, 470016], [831488, 467968], [831488, 461824], [830464, 459776], [830464, 456704], [828416, 454656], [828416, 450560], [827392, 448512], [827392, 437248], [825344, 435200], [825344, 427008], [823296, 425984], [823296, 418816], [822272, 417792], [822272, 413696], [820224, 412672], [820224, 409600], [819200, 407552], [819200, 402432], [817152, 401408], [817152, 396288], [815104, 394240], [815104, 391168], [814080, 389120], [814080, 388096], [812032, 386048], [812032, 382976], [811008, 380928], [811008, 376832], [808960, 374784], [808960, 371712], [806912, 369664], [806912, 366592], [805888, 364544], [805888, 361472], [803840, 360448], [803840, 356352], [802816, 355328], [802816, 353280], [800768, 352256], [800768, 350208], [798720, 348160], [798720, 345088], [797696, 344064], [797696, 336896], [795648, 335872], [795648, 330752], [794624, 328704], [794624, 325632], [792576, 323584], [792576, 319488], [790528, 317440], [790528, 314368], [789504, 312320], [789504, 309248], [787456, 307200], [787456, 306176], [786432, 304128], [786432, 301056], [784384, 299008], [784384, 297984], [782336, 295936], [782336, 292864], [781312, 290816], [781312, 289792], [779264, 287744], [779264, 284672], [778240, 282624], [778240, 281600], [774144, 278528], [774144, 276480], [773120, 274432], [773120, 273408], [771072, 271360], [771072, 270336], [768000, 266240], [768000, 265216], [765952, 263168], [765952, 260096], [764928, 258048], [764928, 254976], [762880, 253952], [762880, 251904], [761856, 249856], [761856, 248832], [759808, 246784], [759808, 243712], [757760, 241664], [757760, 240640], [754688, 237568], [754688, 233472], [753664, 232448], [753664, 230400], [749568, 227328], [749568, 225280], [746496, 222208], [746496, 221184], [743424, 217088], [741376, 217088], [737280, 212992], [737280, 210944], [733184, 207872], [733184, 205824], [732160, 204800], [732160, 202752], [729088, 199680], [729088, 197632], [727040, 196608], [727040, 194560], [723968, 191488], [723968, 189440], [720896, 186368], [720896, 184320], [718848, 183296], [718848, 181248], [716800, 180224], [716800, 178176], [713728, 175104], [713728, 173056], [712704, 172032], [712704, 167936], [710656, 166912], [710656, 164864], [708608, 163840], [708608, 161792], [707584, 159744], [707584, 155648], [705536, 153600], [705536, 150528], [704512, 148480], [704512, 147456], [702464, 145408], [702464, 143360], [699392, 140288], [699392, 139264], [697344, 139264], [696320, 137216], [689152, 137216], [688128, 135168], [679936, 135168], [677888, 134144], [671744, 134144], [669696, 132096], [667648, 132096], [666624, 131072], [664576, 131072], [663552, 129024], [659456, 129024], [658432, 126976], [655360, 126976], [653312, 125952], [615424, 125952], [614400, 123904]]]}
基于OpenCV可以完成对应的区域计算,实例如下所示:
我们将ROI区域提取出来如下所示:
还是很不错的效果,感兴趣也都可以实践下,将AI技术与自己的生产生活场景相结合创造有趣的场景应用吧。
?
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!