SPI

2024-01-02 15:51:45

一、简介

????????SPI是一种同步、全双工、主从式接口。来自主机或从机的数据在 时钟上升沿或下降沿同步。主机和从机可以同时传输数据。SPI接 口可以是3线式或4线式。

  • MOSI(Master Output Slave Input) – 主设备输出/从设备输入信号;
  • MISO(Master Input Slave Output) – 主设备输入/从设备输出信号;
  • SCLK(Serial Clock) – 串行时钟信号,由主设备产生,用来同步数据比特;
  • ?SS(Slave Select)/CS(Chip Select) – 从设备片选信号,低电平有效,由主设备控制;

????????主机和从机之间传输的数据与 主机产生的时钟同步。同I 2 C接口相比,SPI器件支持更高的时钟 频率。 SPI接口只能有一个主机,但可以有一个或多个从机。主机的片选信号用于选择从机。这通常是一个低电平有效信 号,拉高时从机与SPI总线断开连接。当使用多个从机时,主机需 要为每个从机提供单独的片选信号。MOSI和MISO是数据线。MOSI将数据从主机发送到从机,MISO将数 据从从机发送到主机。

二、数据传输

????????数据传输 要开始SPI通信,主机必须发送时钟信号,并通过使能CS信号选择 从机。片选通常是低电平有效信号。因此,主机必须在该信号上 发送逻辑0以选择从机。SPI是全双工接口,主机和从机可以分别 通过MOSI和MISO线路同时发送数据。在SPI通信期间,数据的发送 (串行移出到MOSI/SDO总线上)和接收(采样或读入总线(MISO/ SDI)上的数据)同时进行。串行时钟沿同步数据的移位和采样。SPI 接口允许用户灵活选择时钟的上升沿或下降沿来采样和/或移位数 据。欲确定使用SPI接口传输的数据位数,请参阅器件数据手册。

三、时钟极性和时钟相位

????????时钟极性和时钟相位 在SPI中,主机可以选择时钟极性和时钟相位。在空闲状态期 间,CPOL位设置时钟信号的极性。空闲状态是指传输开始时CS为 高电平且在向低电平转变的期间,以及传输结束时CS为低电平且 在向高电平转变的期间。CPHA位选择时钟相位。根据CPHA位的状 态,使用时钟上升沿或下降沿来采样和/或移位数据。主机必须根 据从机的要求选择时钟极性和时钟相位。根据CPOL和CPHA位的选 择,有四种SPI模式可用。表1显示了这4种SPI模式。

传输的开始和结束用绿色虚线表示,采样边沿用橙色虚线表示,移位边沿用蓝色虚线表示。

四、多从机配置

4.1??常规SPI模式

?常规SPI模式: 在常规模式下,主机需要为每个从机提供单独的片选信号。一旦 主机使能(拉低)片选信号,MOSI/MISO线上的时钟和数据便可用 于所选的从机。如果使能多个片选信号,则MISO线上的数据会被 破坏,因为主机无法识别哪个从机正在传输数据。 从图6可以看出,随着从机数量的增加,来自主机的片选线的数量 也增加。这会快速增加主机需要提供的输入和输出数量,并限制 可以使用的从机数量。可以使用其他技术来增加常规模式下的从 机数量,例如使用多路复用器产生片选信号。

4.2? 菊花链模式

在菊花链模式下,所有从机的片选信号连接在一起,数据从一个 从机传播到下一个从机。在此配置中,所有从机同时接收同一SPI 时钟。来自主机的数据直接送到第一个从机,该从机将数据提供 给下一个从机依此类推。 使用该方法时,由于数据是从一个从机传播到下一个从机,所以 传输数据所需的时钟周期数与菊花链中的从机位置成比例。例如 在图7所示的8位系统中,为使第3个从机能够获得数据,需要24个 时钟脉冲,而常规SPI模式下只需8个时钟脉冲。图8显示了时钟周 期和通过菊花链的数据传播。并非所有SPI器件都支持菊花链模 式。请参阅产品数据手册以确认菊花链是否可用。

?

五、软件SPI读写W25Q64

myspi.h

#ifndef __MYSPI_H
#define __MYSPI_H

void MySPI_Init(void);
void MySPI_Start(void);
void MySPI_Stop(void);
uint8_t MySPI_SwapByte(uint8_t ByteSend);

#endif

myspi.c

#include "stm32f10x.h"     

/*引脚配置层*/

/**
  * 函    数:SPI写SS引脚电平
  * 参    数:BitValue 协议层传入的当前需要写入SS的电平,范围0~1
  * 返 回 值:无
  * 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置SS为低电平,当BitValue为1时,需要置SS为高电平
  */
void MySPI_W_SS(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOA, GPIO_Pin_4, (BitAction)BitValue);		//根据BitValue,设置SS引脚的电平
}

/**
  * 函    数:SPI写SCK引脚电平
  * 参    数:BitValue 协议层传入的当前需要写入SCK的电平,范围0~1
  * 返 回 值:无
  * 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置SCK为低电平,当BitValue为1时,需要置SCK为高电平
  */
void MySPI_W_SCK(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOA, GPIO_Pin_5, (BitAction)BitValue);		//根据BitValue,设置SCK引脚的电平
}

/**
  * 函    数:SPI写MOSI引脚电平
  * 参    数:BitValue 协议层传入的当前需要写入MOSI的电平,范围0~0xFF
  * 返 回 值:无
  * 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置MOSI为低电平,当BitValue非0时,需要置MOSI为高电平
  */
void MySPI_W_MOSI(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOA, GPIO_Pin_7, (BitAction)BitValue);		//根据BitValue,设置MOSI引脚的电平,BitValue要实现非0即1的特性
}
/**
  * 函    数:I2C读MISO引脚电平
  * 参    数:无
  * 返 回 值:协议层需要得到的当前MISO的电平,范围0~1
  * 注意事项:此函数需要用户实现内容,当前MISO为低电平时,返回0,当前MISO为高电平时,返回1
  */
uint8_t MySPI_R_MISO(void)
{
	return GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_6);			//读取MISO电平并返回
}

/**
  * 函    数:SPI初始化
  * 参    数:无
  * 返 回 值:无
  * 注意事项:此函数需要用户实现内容,实现SS、SCK、MOSI和MISO引脚的初始化
  */
void MySPI_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_7;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA4、PA5和PA7引脚初始化为推挽输出
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA6引脚初始化为上拉输入
	
	/*设置默认电平*/
	MySPI_W_SS(1);											//SS默认高电平
	MySPI_W_SCK(0);											//SCK默认低电平
}

/*协议层*/

/**
  * 函    数:SPI起始
  * 参    数:无
  * 返 回 值:无
  */
void MySPI_Start(void)
{
	MySPI_W_SS(0);				//拉低SS,开始时序
}

/**
  * 函    数:SPI终止
  * 参    数:无
  * 返 回 值:无
  */
void MySPI_Stop(void)
{
	MySPI_W_SS(1);				//拉高SS,终止时序
}


/**
  * 函    数:SPI交换传输一个字节,使用SPI模式0
  * 参    数:ByteSend 要发送的一个字节
  * 返 回 值:接收的一个字节
  */
uint8_t MySPI_SwapByte(uint8_t ByteSend)
{
	uint8_t i, ByteReceive = 0x00;					//定义接收的数据,并赋初值0x00,此处必须赋初值0x00,后面会用到
	
	for (i = 0; i < 8; i ++)						//循环8次,依次交换每一位数据
	{
		MySPI_W_MOSI(ByteSend & (0x80 >> i));		//使用掩码的方式取出ByteSend的指定一位数据并写入到MOSI线
		MySPI_W_SCK(1);								//拉高SCK,上升沿移出数据
		if (MySPI_R_MISO() == 1){ByteReceive |= (0x80 >> i);}	//读取MISO数据,并存储到Byte变量
																//当MISO为1时,置变量指定位为1,当MISO为0时,不做处理,指定位为默认的初值0
		MySPI_W_SCK(0);								//拉低SCK,下降沿移入数据
	}
	
	return ByteReceive;								//返回接收到的一个字节数据
}

W25Q64.h

#ifndef __W25Q64_H
#define __W25Q64_H

void W25Q64_Init(void);
void W25Q64_ReadID(uint8_t *MID, uint16_t *DID);
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count);
void W25Q64_SectorErase(uint32_t Address);
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count);

#endif

W25Q64_INS.h?

#ifndef __W25Q64_INS_H
#define __W25Q64_INS_H

#define W25Q64_WRITE_ENABLE							0x06
#define W25Q64_WRITE_DISABLE						0x04
#define W25Q64_READ_STATUS_REGISTER_1				0x05
#define W25Q64_READ_STATUS_REGISTER_2				0x35
#define W25Q64_WRITE_STATUS_REGISTER				0x01
#define W25Q64_PAGE_PROGRAM							0x02
#define W25Q64_QUAD_PAGE_PROGRAM					0x32
#define W25Q64_BLOCK_ERASE_64KB						0xD8
#define W25Q64_BLOCK_ERASE_32KB						0x52
#define W25Q64_SECTOR_ERASE_4KB						0x20
#define W25Q64_CHIP_ERASE							0xC7
#define W25Q64_ERASE_SUSPEND						0x75
#define W25Q64_ERASE_RESUME							0x7A
#define W25Q64_POWER_DOWN							0xB9
#define W25Q64_HIGH_PERFORMANCE_MODE				0xA3
#define W25Q64_CONTINUOUS_READ_MODE_RESET			0xFF
#define W25Q64_RELEASE_POWER_DOWN_HPM_DEVICE_ID		0xAB
#define W25Q64_MANUFACTURER_DEVICE_ID				0x90
#define W25Q64_READ_UNIQUE_ID						0x4B
#define W25Q64_JEDEC_ID								0x9F
#define W25Q64_READ_DATA							0x03
#define W25Q64_FAST_READ							0x0B
#define W25Q

W25Q64.c

#include "stm32f10x.h"                  // Device header
#include "MySPI.h"
#include "W25Q64_Ins.h"

/**
  * 函    数:W25Q64初始化
  * 参    数:无
  * 返 回 值:无
  */
void W25Q64_Init(void)
{
	MySPI_Init();					//先初始化底层的SPI
}

/**
  * 函    数:MPU6050读取ID号
  * 参    数:MID 工厂ID,使用输出参数的形式返回
  * 参    数:DID 设备ID,使用输出参数的形式返回
  * 返 回 值:无
  */
void W25Q64_ReadID(uint8_t *MID, uint16_t *DID)
{
	MySPI_Start();								//SPI起始
	MySPI_SwapByte(W25Q64_JEDEC_ID);			//交换发送读取ID的指令
	*MID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//交换接收MID,通过输出参数返回
	*DID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//交换接收DID高8位
	*DID <<= 8;									//高8位移到高位
	*DID |= MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//或上交换接收DID的低8位,通过输出参数返回
	MySPI_Stop();								//SPI终止
}

/**
  * 函    数:W25Q64写使能
  * 参    数:无
  * 返 回 值:无
  */
void W25Q64_WriteEnable(void)
{
	MySPI_Start();								//SPI起始
	MySPI_SwapByte(W25Q64_WRITE_ENABLE);		//交换发送写使能的指令
	MySPI_Stop();								//SPI终止
}

/**
  * 函    数:W25Q64等待忙
  * 参    数:无
  * 返 回 值:无
  */
void W25Q64_WaitBusy(void)
{
	uint32_t Timeout;
	MySPI_Start();								//SPI起始
	MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);				//交换发送读状态寄存器1的指令
	Timeout = 100000;							//给定超时计数时间
	while ((MySPI_SwapByte(W25Q64_DUMMY_BYTE) & 0x01) == 0x01)	//循环等待忙标志位
	{
		Timeout --;								//等待时,计数值自减
		if (Timeout == 0)						//自减到0后,等待超时
		{
			/*超时的错误处理代码,可以添加到此处*/
			break;								//跳出等待,不等了
		}
	}
	MySPI_Stop();								//SPI终止
}


/**
  * 函    数:W25Q64页编程
  * 参    数:Address 页编程的起始地址,范围:0x000000~0x7FFFFF
  * 参    数:DataArray	用于写入数据的数组
  * 参    数:Count 要写入数据的数量,范围:0~256
  * 返 回 值:无
  * 注意事项:写入的地址范围不能跨页
  */
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count)
{
	uint16_t i;
	
	W25Q64_WriteEnable();						//写使能
	
	MySPI_Start();								//SPI起始
	MySPI_SwapByte(W25Q64_PAGE_PROGRAM);		//交换发送页编程的指令
	MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位
	MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位
	MySPI_SwapByte(Address);					//交换发送地址7~0位
	for (i = 0; i < Count; i ++)				//循环Count次
	{
		MySPI_SwapByte(DataArray[i]);			//依次在起始地址后写入数据
	}
	MySPI_Stop();								//SPI终止
	
	W25Q64_WaitBusy();							//等待忙
}


/**
  * 函    数:W25Q64扇区擦除(4KB)
  * 参    数:Address 指定扇区的地址,范围:0x000000~0x7FFFFF
  * 返 回 值:无
  */
void W25Q64_SectorErase(uint32_t Address)
{
	W25Q64_WriteEnable();						//写使能
	
	MySPI_Start();								//SPI起始
	MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);	//交换发送扇区擦除的指令
	MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位
	MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位
	MySPI_SwapByte(Address);					//交换发送地址7~0位
	MySPI_Stop();								//SPI终止
	
	W25Q64_WaitBusy();							//等待忙
}


/**
  * 函    数:W25Q64读取数据
  * 参    数:Address 读取数据的起始地址,范围:0x000000~0x7FFFFF
  * 参    数:DataArray 用于接收读取数据的数组,通过输出参数返回
  * 参    数:Count 要读取数据的数量,范围:0~0x800000
  * 返 回 值:无
  */
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count)
{
	uint32_t i;
	MySPI_Start();								//SPI起始
	MySPI_SwapByte(W25Q64_READ_DATA);			//交换发送读取数据的指令
	MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位
	MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位
	MySPI_SwapByte(Address);					//交换发送地址7~0位
	for (i = 0; i < Count; i ++)				//循环Count次
	{
		DataArray[i] = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//依次在起始地址后读取数据
	}
	MySPI_Stop();								//SPI终止
}

文章来源:https://blog.csdn.net/m0_61973119/article/details/135294974
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。