代码随想录算法训练营 | day50 动态规划 123.买卖股票的最佳时机Ⅲ,188.买卖股票的最佳时机Ⅳ

2023-12-13 13:08:07

刷题

123.买卖股票的最佳时机Ⅲ

题目链接 | 文章讲解 | 视频讲解

题目:给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:

  • 输入:prices = [3,3,5,0,0,3,1,4]

  • 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。

  • 示例 2:

  • 输入:prices = [1,2,3,4,5]

  • 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

  • 示例 3:

  • 输入:prices = [7,6,4,3,1]

  • 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为0。

  • 示例 4:

  • 输入:prices = [1] 输出:0

提示:

  • 1 <= prices.length <= 10^5

  • 0 <= prices[i] <= 10^5

思路及实现

动态规划五部曲:

1.确定dp数组以及下标的含义

一天一共就有五个状态,

0.没有操作 (其实我们也可以不设置这个状态)

  1. 第一次持有股票

  2. 第一次不持有股票

  3. 第二次持有股票

  4. 第二次不持有股票

dp[i] [j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i] [j]表示第i天状态j所剩最大现金。

需要注意:dp[i] [1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

例如 dp[i] [1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i] [1] 延续买入股票的这个状态。

2.确定递推公式

达到dp[i] [1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i] [1] = dp[i-1] [0] - prices[i]

  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i] [1] = dp[i - 1] [1]

那么dp[i] [1]究竟选 dp[i-1] [0] - prices[i],还是dp[i - 1] [1]呢?

一定是选最大的,所以 dp[i] [1] = max(dp[i-1] [0] - prices[i], dp[i - 1] [1]);

同理dp[i] [2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i] [2] = dp[i - 1] [1] + prices[i]

  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i] [2] = dp[i - 1] [2]

所以dp[i] [2] = max(dp[i - 1] [1] + prices[i], dp[i - 1] [2])

同理可推出剩下状态部分:

dp[i] [3] = max(dp[i - 1] [3], dp[i - 1] [2] - prices[i]);

dp[i] [4] = max(dp[i - 1] [4], dp[i - 1] [3] + prices[i]);

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0] [0] = 0;

第0天做第一次买入的操作,dp[0] [1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0] [2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0] [3] = -prices[0];

同理第二次卖出初始化dp[0] [4] = 0;

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5]为例

大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp4已经包含了dp4的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

所以最终最大利润是dp[4] [4]

以上五部都分析完了,不难写出如下代码:

/ 版本一
class Solution {
 ? ?public int maxProfit(int[] prices) {
 ? ? ? ?int len = prices.length;
 ? ? ? ?// 边界判断, 题目中 length >= 1, 所以可省去
 ? ? ? ?if (prices.length == 0) return 0;
?
 ? ? ? ?/*
 ? ? ? ? * 定义 5 种状态:
 ? ? ? ? * 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出
 ? ? ? ? */
 ? ? ? ?int[][] dp = new int[len][5];
 ? ? ? ?dp[0][1] = -prices[0];
 ? ? ? ?// 初始化第二次买入的状态是确保 最后结果是最多两次买卖的最大利润
 ? ? ? ?dp[0][3] = -prices[0];
?
 ? ? ? ?for (int i = 1; i < len; i++) {
 ? ? ? ? ? ?dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);
 ? ? ? ? ? ?dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
 ? ? ? ? ? ?dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
 ? ? ? ? ? ?dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
 ? ? ?  }
?
 ? ? ? ?return dp[len - 1][4];
 ?  }
}
?
// 版本二: 空间优化
class Solution {
 ? ?public int maxProfit(int[] prices) {
 ? ? ? ?int[] dp = new int[4]; 
 ? ? ? ?// 存储两次交易的状态就行了
 ? ? ? ?// dp[0]代表第一次交易的买入
 ? ? ? ?dp[0] = -prices[0];
 ? ? ? ?// dp[1]代表第一次交易的卖出
 ? ? ? ?dp[1] = 0;
 ? ? ? ?// dp[2]代表第二次交易的买入
 ? ? ? ?dp[2] = -prices[0];
 ? ? ? ?// dp[3]代表第二次交易的卖出
 ? ? ? ?dp[3] = 0;
 ? ? ? ?for(int i = 1; i <= prices.length; i++){
 ? ? ? ? ? ?// 要么保持不变,要么没有就买,有了就卖
 ? ? ? ? ? ?dp[0] = Math.max(dp[0], -prices[i-1]);
 ? ? ? ? ? ?dp[1] = Math.max(dp[1], dp[0]+prices[i-1]);
 ? ? ? ? ? ?// 这已经是第二次交易了,所以得加上前一次交易卖出去的收获
 ? ? ? ? ? ?dp[2] = Math.max(dp[2], dp[1]-prices[i-1]);
 ? ? ? ? ? ?dp[3] = Math.max(dp[3], dp[2]+ prices[i-1]);
 ? ? ?  }
 ? ? ? ?return dp[3];
 ?  }
}

188.买卖股票的最佳时机Ⅳ

题目链接 | 文章讲解 | 视频讲解

题目:给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

  • 示例 1:

  • 输入:k = 2, prices = [2,4,1]

  • 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。

  • 示例 2:

  • 输入:k = 2, prices = [3,2,6,5,0,3]

  • 输出:7 解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4。随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

  • 0 <= k <= 100

  • 0 <= prices.length <= 1000

  • 0 <= prices[i] <= 1000

思路及实现

动规五部曲,分析如下:

1.确定dp数组以及下标的含义

动态规划:123.买卖股票的最佳时机III?中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。

使用二维数组 dp[i] [j] :第i天的状态为j,所剩下的最大现金是dp[i] [j]

j的状态表示为:

  • 0 表示不操作

  • 1 第一次买入

  • 2 第一次卖出

  • 3 第二次买入

  • 4 第二次卖出

  • .....

大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入

题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。

2.确定递推公式

还要强调一下:dp[i] [1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

达到dp[i] [1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i] [1] = dp[i - 1] [0] - prices[i]

  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i] [1] = dp[i - 1] [1]

选最大的,所以 dp[i] [1] = max(dp[i - 1] [0] - prices[i], dp[i - 1] [1]);

同理dp[i] [2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i] [2] = dp[i - 1] [1] + prices[i]

  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i] [2] = dp[i - 1] [2]

所以dp[i] [2] = max(dp[i - 1] [1] + prices[i], dp[i - 1] [2])

本题和动态规划:123.买卖股票的最佳时机III最大的区别就是这里要类比j为奇数是买,偶数是卖的状态

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0] [0] = 0;

第0天做第一次买入的操作,dp[0] [1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0] [2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0] [3] = -prices[0];

第二次卖出初始化dp[0] [4] = 0;

所以同理可以推出dp[0] [j]当j为奇数的时候都初始化为 -prices[0]

在初始化的地方同样要类比j为偶数是卖、奇数是买的状态

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5],k=2为例。

最后一次卖出,一定是利润最大的,dp[prices.length() - 1] [2 * k]即红色部分就是最后求解。

以上分析完毕,代码如下:

class Solution {
    public int maxProfit(int k, int[] prices) {
        if (prices.length == 0) return 0;

        // [天数][交易次数][是否持有股票]
        int len = prices.length;
        int[][][] dp = new int[len][k + 1][2];
        
        // dp数组初始化
        // 初始化所有的交易次数是为确保 最后结果是最多 k 次买卖的最大利润
        for (int i = 0; i <= k; i++) {
            dp[0][i][1] = -prices[0];
        }

        for (int i = 1; i < len; i++) {
            for (int j = 1; j <= k; j++) {
                // dp方程, 0表示不持有/卖出, 1表示持有/买入
                dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j][1] + prices[i]);
                dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j - 1][0] - prices[i]);
            }
        }
        return dp[len - 1][k][0];
    }
}

// 版本二: 二维 dp数组
class Solution {
    public int maxProfit(int k, int[] prices) {
        if (prices.length == 0) return 0;

        // [天数][股票状态]
        // 股票状态: 奇数表示第 k 次交易持有/买入, 偶数表示第 k 次交易不持有/卖出, 0 表示没有操作
        int len = prices.length;
        int[][] dp = new int[len][k*2 + 1];
        
        // dp数组的初始化, 与版本一同理
        for (int i = 1; i < k*2; i += 2) {
            dp[0][i] = -prices[0];
        }

        for (int i = 1; i < len; i++) {
            for (int j = 0; j < k*2 - 1; j += 2) {
                dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[len - 1][k*2];
    }
}

//版本三:一维 dp数组 (下面有和卡哥邏輯一致的一維數組JAVA解法)
class Solution {
    public int maxProfit(int k, int[] prices) {
        if(prices.length == 0){
            return 0;
        }
        if(k == 0){
            return 0;
        }
        // 其实就是123题的扩展,123题只用记录2次交易的状态
        // 这里记录k次交易的状态就行了
        // 每次交易都有买入,卖出两个状态,所以要乘 2
        int[] dp = new int[2 * k];
        // 按123题解题格式那样,做一个初始化
        for(int i = 0; i < dp.length / 2; i++){
            dp[i * 2] = -prices[0];
        }
        for(int i = 1; i <= prices.length; i++){
            dp[0] = Math.max(dp[0], -prices[i - 1]);
            dp[1] = Math.max(dp[1], dp[0] + prices[i - 1]);
            // 还是与123题一样,与123题对照来看
            // 就很容易啦
            for(int j = 2; j < dp.length; j += 2){
                dp[j] = Math.max(dp[j], dp[j - 1] - prices[i-1]);
                dp[j + 1] = Math.max(dp[j + 1], dp[j] + prices[i - 1]);
            }
        }
        // 返回最后一次交易卖出状态的结果就行了
        return dp[dp.length - 1];
    }
}

文章来源:https://blog.csdn.net/weixin_45011378/article/details/134967994
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。