C语言:字符串字面量及其保存位置
相关阅读
C语言https://blog.csdn.net/weixin_45791458/category_12423166.html?spm=1001.2014.3001.5482
? ? ? ? 虽然C语言中不存在字符串类型,但依然可以通过数组或指针的方式保存字符串,但字符串字面量却没有想象的这么简单,本文就将对此进行讨论。
? ? ? ? 字符串字面量保存在静态存储区,所谓静态存储区即表示其值在程序执行前就已存在于可执行文件中。如果更详细地说,字符串字面量可能保存在.rodata?section中,所以当尝试使用指针改变一个字符串字面量的值时会出现段错误。需要特别说明的是上面所说的字符串字面量的位置没有任何限制,可以是在函数内,也可以是在函数外,如下面的代码所示。
例1
#include <stdio.h>
char *ptr1 = "abcde"; //"abcde"被添加到.rodata section
int main()
{
char *ptr2 = "ABCDE"; //"ABCDE"被添加到.rodata section
printf("This is a string"); //"This is a string"被添加到.rodata section
}
????????现在我们可以使用gcc编译链接成可执行程序,如下所示。
$gcc test.c -o test
? ? ? ? 然后使用readelf命令读取二进制可执行文件test中的信息,注意这里添加了-S选项表示只输出section头的相关信息。
$readelf -S test
There are 31 section headers, starting at offset 0x36c0:
Section Headers:
[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
[ 0] NULL 0000000000000000 00000000
0000000000000000 0000000000000000 0 0 0
[ 1] .interp PROGBITS 0000000000000318 00000318
000000000000001c 0000000000000000 A 0 0 1
[ 2] .note.gnu.pr[...] NOTE 0000000000000338 00000338
0000000000000030 0000000000000000 A 0 0 8
[ 3] .note.gnu.bu[...] NOTE 0000000000000368 00000368
0000000000000024 0000000000000000 A 0 0 4
[ 4] .note.ABI-tag NOTE 000000000000038c 0000038c
0000000000000020 0000000000000000 A 0 0 4
[ 5] .gnu.hash GNU_HASH 00000000000003b0 000003b0
0000000000000024 0000000000000000 A 6 0 8
[ 6] .dynsym DYNSYM 00000000000003d8 000003d8
00000000000000a8 0000000000000018 A 7 1 8
[ 7] .dynstr STRTAB 0000000000000480 00000480
000000000000008f 0000000000000000 A 0 0 1
[ 8] .gnu.version VERSYM 0000000000000510 00000510
000000000000000e 0000000000000002 A 6 0 2
[ 9] .gnu.version_r VERNEED 0000000000000520 00000520
0000000000000030 0000000000000000 A 7 1 8
[10] .rela.dyn RELA 0000000000000550 00000550
00000000000000d8 0000000000000018 A 6 0 8
[11] .rela.plt RELA 0000000000000628 00000628
0000000000000018 0000000000000018 AI 6 24 8
[12] .init PROGBITS 0000000000001000 00001000
000000000000001b 0000000000000000 AX 0 0 4
[13] .plt PROGBITS 0000000000001020 00001020
0000000000000020 0000000000000010 AX 0 0 16
[14] .plt.got PROGBITS 0000000000001040 00001040
0000000000000010 0000000000000010 AX 0 0 16
[15] .plt.sec PROGBITS 0000000000001050 00001050
0000000000000010 0000000000000010 AX 0 0 16
[16] .text PROGBITS 0000000000001060 00001060
000000000000011b 0000000000000000 AX 0 0 16
[17] .fini PROGBITS 000000000000117c 0000117c
000000000000000d 0000000000000000 AX 0 0 4
[18] .rodata PROGBITS 0000000000002000 00002000
0000000000000021 0000000000000000 A 0 0 4
[19] .eh_frame_hdr PROGBITS 0000000000002024 00002024
0000000000000034 0000000000000000 A 0 0 4
[20] .eh_frame PROGBITS 0000000000002058 00002058
00000000000000ac 0000000000000000 A 0 0 8
[21] .init_array INIT_ARRAY 0000000000003db8 00002db8
0000000000000008 0000000000000008 WA 0 0 8
[22] .fini_array FINI_ARRAY 0000000000003dc0 00002dc0
0000000000000008 0000000000000008 WA 0 0 8
[23] .dynamic DYNAMIC 0000000000003dc8 00002dc8
00000000000001f0 0000000000000010 WA 7 0 8
[24] .got PROGBITS 0000000000003fb8 00002fb8
0000000000000048 0000000000000008 WA 0 0 8
[25] .data PROGBITS 0000000000004000 00003000
0000000000000018 0000000000000000 WA 0 0 8
[26] .bss NOBITS 0000000000004018 00003018
0000000000000008 0000000000000000 WA 0 0 1
[27] .comment PROGBITS 0000000000000000 00003018
000000000000002d 0000000000000001 MS 0 0 1
[28] .symtab SYMTAB 0000000000000000 00003048
0000000000000378 0000000000000018 29 18 8
[29] .strtab STRTAB 0000000000000000 000033c0
00000000000001e1 0000000000000000 0 0 1
[30] .shstrtab STRTAB 0000000000000000 000035a1
000000000000011a 0000000000000000 0 0 1
Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings), I (info),
L (link order), O (extra OS processing required), G (group), T (TLS),
C (compressed), x (unknown), o (OS specific), E (exclude),
D (mbind), l (large), p (processor specific)
? ? ? ? 从上面的信息中可以找到.rodata section的offset(即该section在二进制文件中的偏移)为2000。
? ? ? ? 下面使用hexdump命令查看二进制可执行文件文件test中的内容,其中-C选项用于以十六进制单个字节的方式输出并将对应的ASCII码显示在右边。
$hexdump -C test
......
00002000 01 00 02 00 61 62 63 64 65 00 41 42 43 44 45 00 |....abcde.ABCDE.|
00002010 54 68 69 73 20 69 73 20 61 20 73 74 72 69 6e 67 |This is a string|
00002020 00 00 00 00 01 1b 03 3b 30 00 00 00 05 00 00 00 |.......;0.......|
......
? ? ? ? 通过以上我们知道字符串字面量一般是保存在可执行文件的.rodata section中,但是否所有字符串字面量都会保存在.rodata section中呢?答案是否定的,如下例所示。
例2
char array1[6] = "aaaaaa"; //"aaaaaa"被添加到.data section作为全局数组的初始值
const char array2[6] = "bbbbbb" //"bbbbbb"被添加到.rodata section,因为它是只读的数据
int main()
{
const char array3[6] = "cccccc" //"cccccc"被添加到.rodata section,无论是否有const修饰
}
? ? ? ? 对例2结果的验证在此跳过,交给读者进行。下面进行结果的说明,在上面的代码中,array1是一个有字符串初始值的全局数组,字符串字面量会直接添加到.data section中,即保存全局变量的section,且并不会在.rodata section保存。但array2是一个只读的有字符串初始值的全局数组,字符串字面量还是会被添加到.rodata section。至于array3,它和例1一样,无论是否有const修饰,字符串字面量都是被放在.rodata section。但要注意的是,array3与array2和array1不同,这个数组是保存在栈上的,而数组的值"cccccc"是在程序执行前就在可执行代码中的.rodata段的。在进入main函数后,栈上会开辟空间给array3,然后将.rodata区的代码复制一份到array3栈上的空间,在退出main函数后,栈上空间被自动回收。
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!