计算目标检测和语义分割的PR

2023-12-15 18:30:23

需求描述

  1. 实际工作中,相比于mAP项目更加关心的是特定阈值下的precision和recall结果;
  2. 由于本次的GT中除了目标框之外还存在多边形标注,为此,计算IoU的方式从框与框之间变成了mask之间
    本文的代码适用于MMDetection下的预测结果和COCO格式之间来计算PR结果,具体的实现过程如下:
  • 获取预测结果并保存到json文件中;
  • 解析预测结果和GT;
  • 根据image_id获取每张图的预测结果和GT;
  • 基于mask计算预测结果和GT之间的iou矩阵;
  • 根据iou矩阵得到对应的tp、fp和num_gt;
  • 迭代所有的图像得到所有的tp、fp和num_gt累加,根据公式计算precision和recall;

具体实现

获取预测结果

在MMDetection框架下,通常使用如下的命令来评估模型的结果:

bash tools/dist_test.sh configs/aaaa/gaotie_cascade_rcnn_r50_fpn_1x.py work_dirs/gaotie_cascade_rcnn_r50_fpn_1x/epoch_20.pth 8 --eval bbox

此时能获取到类似下图的mAP结果。
mAP)
而我们需要在某个过程把预测结果保存下,用于后续得到PR结果,具体可以在mmdet/datasets/coco.py的438行位置添加如下代码:

 try:
     import shutil
     cocoDt = cocoGt.loadRes(result_files[metric])
     shutil.copyfile(result_files[metric], "results.bbox.json")

这样我们就可以得到results.bbox.json文件,里面包含的是模型的预测结果,如下图所示。
在这里插入图片描述)

获取GT结果

由于标注时有两个格式:矩形框和多边形,因此在构建GT的coco格式文件时,对于矩形框会将其四个顶点作为多边形传入到segmentations字段,对于多边形会计算出外接矩形传入到bbox字段。
在这里插入图片描述)
为此,获取GT信息的脚本实现如下:

def construct_gt_results(gt_json_path):

    results = dict()
    bbox_results = dict()
    cocoGt = COCO(annotation_file=gt_json_path)
    # cat_ids = cocoGt.getCatIds()
    img_ids = cocoGt.getImgIds()
    for id in img_ids:
        anno_ids = cocoGt.getAnnIds(imgIds=[id])
        
        annotations = cocoGt.loadAnns(ids=anno_ids)
        for info in annotations:
            img_id = info["image_id"]
            if img_id not in results:
                results[img_id] = list()
                bbox_results[img_id] = list()
            bbox = info["bbox"]
            x1, y1, x2, y2 = bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]
            # results[img_id].append([x1, y1, x2, y2])
            # mask = _poly2mask(info["segmentation"], img_h=1544, img_w=2064)
            results[img_id].append(info["segmentation"])
            bbox_results[img_id].append([x1, y1, x2, y2])
    return results, img_ids, cocoGt, bbox_results

输入GT的json文件路径,返回所有图像的分割结果,image_id,COCO对象和目标框结果(用于后续的可视化结果)。

获取预测结果

模型预测出来的结果都是目标框的形式,与上面一样,将目标框的四个顶点作为多边形的分割结果。具体解析脚本如下:

def construct_det_results(det_json_path):

    results = dict()
    bbox_results = dict()
    scores  = dict()
    with open(det_json_path) as f:
        json_data = json.load(f)
    for info in json_data:
        img_id = info["image_id"]
        if img_id not in results:
            results[img_id] = list()
            scores[img_id] = list()
            bbox_results[img_id] = list()
        bbox = info["bbox"]
        x1, y1, x2, y2 = bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]
        segm = [[x1, y1, x2, y1, x2, y2, x1, y2]]
        # mask = _poly2mask(segm, img_h=1544, img_w=2064)
        score = info["score"]
        # results[img_id].append([x1, y1, x2, y2, score])
        results[img_id].append(segm)
        bbox_results[img_id].append([x1, y1, x2, y2])
        scores[img_id].append(score)
    return results, scores, bbox_results

输入的是预测结果的json文件路径,输出是所有图像分割结果、得分和目标框结果。

根据image_id计算单个图像的TP、FP结果

本步骤的具体内容如下:

  1. 根据置信度阈值对预测框进行筛选;
  2. 将所有的多边形转换为mask,用于后续计算IoU;
  3. 得到tp和fp;
  4. 可视化fp和fn结果;

将多边形转换为mask

    if img_id in det_results:
        # for dt in det_results[img_id]:
        for idx, score in enumerate(det_scores[img_id]):
            # score = dt[-1]
            if score > conf_thrs:
                mask = _poly2mask(det_results[img_id][idx], img_h=1544, img_w=2064)
                det_bboxes.append(mask)
                det_thrs_scores.append(score)
                plot_det_bboxes.append(det_tmp_bboxes[img_id][idx])
    if img_id in gt_results:     
        for segm in gt_results[img_id]:
            mask = _poly2mask(segm, img_h=1544, img_w=2064)   
            gt_bboxes.append(mask)
        plot_gt_bboxes = gt_tmp_bboxes[img_id]

通过_poly2mask函数可以将多边形转换为mask,_poly2mask函数的实现如下。

def _poly2mask(mask_ann, img_h, img_w):
    """Private function to convert masks represented with polygon to
    bitmaps.

    Args:
        mask_ann (list | dict): Polygon mask annotation input.
        img_h (int): The height of output mask.
        img_w (int): The width of output mask.

    Returns:
        numpy.ndarray: The decode bitmap mask of shape (img_h, img_w).
    """

    if isinstance(mask_ann, list):
        # polygon -- a single object might consist of multiple parts
        # we merge all parts into one mask rle code
        rles = maskUtils.frPyObjects(mask_ann, img_h, img_w)
        rle = maskUtils.merge(rles)
    elif isinstance(mask_ann['counts'], list):
        # uncompressed RLE
        rle = maskUtils.frPyObjects(mask_ann, img_h, img_w)
    else:
        # rle
        rle = mask_ann
    mask = maskUtils.decode(rle)
    return mask

计算单张图像的TP和FP

本文中使用tpfp_default函数实现该功能,具体实现如下:

def tpfp_default(det_bboxes,
                 gt_bboxes,
                 gt_bboxes_ignore=None,
                 det_thrs_scores=None,
                 iou_thr=0.5,
                 area_ranges=None):
    """Check if detected bboxes are true positive or false positive.

    Args:
        det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).
        gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).
        gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,
            of shape (k, 4). Default: None
        iou_thr (float): IoU threshold to be considered as matched.
            Default: 0.5.
        area_ranges (list[tuple] | None): Range of bbox areas to be evaluated,
            in the format [(min1, max1), (min2, max2), ...]. Default: None.

    Returns:
        tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of
            each array is (num_scales, m).
    """
    # an indicator of ignored gts
    gt_ignore_inds = np.concatenate(
        (np.zeros(gt_bboxes.shape[0], dtype=np.bool),
         np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool)))
    # stack gt_bboxes and gt_bboxes_ignore for convenience
    # gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))

    num_dets = det_bboxes.shape[0]
    num_gts = gt_bboxes.shape[0]
    if area_ranges is None:
        area_ranges = [(None, None)]
    num_scales = len(area_ranges)
    # tp and fp are of shape (num_scales, num_gts), each row is tp or fp of
    # a certain scale
    tp = np.zeros((num_scales, num_dets), dtype=np.float32)
    fp = np.zeros((num_scales, num_dets), dtype=np.float32)

    # if there is no gt bboxes in this image, then all det bboxes
    # within area range are false positives
    if gt_bboxes.shape[0] == 0:
        if area_ranges == [(None, None)]:
            fp[...] = 1
        else:
            det_areas = (det_bboxes[:, 2] - det_bboxes[:, 0] + 1) * (
                det_bboxes[:, 3] - det_bboxes[:, 1] + 1)
            for i, (min_area, max_area) in enumerate(area_ranges):
                fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1
        return tp, fp

    # ious = bbox_overlaps(det_bboxes, gt_bboxes)
    # ious = mask_overlaps(det_bboxes, gt_bboxes)
    ious = mask_wraper(det_bboxes, gt_bboxes)
    # for each det, the max iou with all gts
    ious_max = ious.max(axis=1)
    # for each det, which gt overlaps most with it
    ious_argmax = ious.argmax(axis=1)
    # sort all dets in descending order by scores
    # sort_inds = np.argsort(-det_bboxes[:, -1])
    sort_inds = np.argsort(-det_thrs_scores)
    for k, (min_area, max_area) in enumerate(area_ranges):
        gt_covered = np.zeros(num_gts, dtype=bool)
        # if no area range is specified, gt_area_ignore is all False
        if min_area is None:
            gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
        else:
            gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0] + 1) * (
                gt_bboxes[:, 3] - gt_bboxes[:, 1] + 1)
            gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
        for i in sort_inds:
            if ious_max[i] >= iou_thr:
                matched_gt = ious_argmax[i]     # 得到对应的GT索引
                if not (gt_ignore_inds[matched_gt]
                        or gt_area_ignore[matched_gt]):
                    if not gt_covered[matched_gt]:
                        gt_covered[matched_gt] = True   # GT占位
                        tp[k, i] = 1            
                    else:
                        fp[k, i] = 1
                # otherwise ignore this detected bbox, tp = 0, fp = 0
            elif min_area is None:
                fp[k, i] = 1
            else:
                bbox = det_bboxes[i, :4]
                area = (bbox[2] - bbox[0] + 1) * (bbox[3] - bbox[1] + 1)
                if area >= min_area and area < max_area:
                    fp[k, i] = 1
    return tp, fp

过程是先获取预测框和GT框之间的IoU矩阵,然后按照置信度排序,将每个预测框分配给GT框得到tp和fp结果。

计算mask的IoU

IoU的定义都是一样的,计算公式如下:
在这里插入图片描述
基于mask计算IoU的实验也非常简单,代码如下:

def mask_overlaps(bboxes1, bboxes2, mode='iou'):

    assert mode in ['iou', 'iof']

    bboxes1 = bboxes1.astype(np.bool_)
    bboxes2 = bboxes2.astype(np.bool_)
    
    intersection = np.logical_and(bboxes1, bboxes2)
    union = np.logical_or(bboxes1, bboxes2)

    intersection_area = np.sum(intersection)
    union_area = np.sum(union)

    iou = intersection_area / union_area
    return iou

而计算预测框和GT之间的IoU矩阵实现如下:

def mask_wraper(bboxes1, bboxes2, mode='iou'):
    rows = bboxes1.shape[0]     # gt
    cols = bboxes2.shape[0]     # det
    ious = np.zeros((rows, cols), dtype=np.float32)
    if rows * cols == 0:
        return ious
    for i in range(rows):
        for j in range(cols):
            iou = mask_overlaps(bboxes1[i], bboxes2[j])
            ious[i, j] = iou
    return ious

至此,通过上述过程就能获取到单张图像的tp和fp结果。

可视化FP和FN结果

此外,我们需要分析模型的badcase,因此,可以将FP和FN的结果可视化出来,我这里是直接将存在问题的图像所有预测框和GT框都画出来了。

    if VIS and (fp > 0 or tp < gt):
        img_data, path = draw_bbox(img_id=img_id, cocoGt=cocoGt, det_bboxes=plot_det_bboxes, gt_bboxes=plot_gt_bboxes)
        if fp > 0:
            save_dir = os.path.join(VIS_ROOT, "tmp/FP/")
            os.makedirs(save_dir, exist_ok=True)
            cv2.imwrite(os.path.join(save_dir, os.path.basename(path)+".jpg"), img_data, [int(cv2.IMWRITE_JPEG_QUALITY), 30])
        if tp < gt:
            save_dir = os.path.join(VIS_ROOT, "tmp/FN/")
            os.makedirs(save_dir, exist_ok=True)
            cv2.imwrite(os.path.join(save_dir, os.path.basename(path)+".jpg"), img_data,
                        [int(cv2.IMWRITE_JPEG_QUALITY), 30])

画框的实现如下:

def draw_bbox(img_id, cocoGt, det_bboxes, gt_bboxes):
    path = cocoGt.loadImgs(ids=[img_id])[0]["file_name"]
    img_path = os.path.join(IMG_ROOT, path)
    img_data = cv2.imread(img_path)
    for box in det_bboxes:
        # color_mask = (0, 0, 255)
        # color_mask = np.array([0, 0, 255], dtype=np.int8)
        # bbox_mask = box.astype(np.bool)
        cv2.rectangle(img_data, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 0, 255), 3)
        # img_data[bbox_mask] = img_data[bbox_mask] * 0.5 + color_mask * 0.5
    for box in gt_bboxes:
        # color_mask = np.array([0, 255, 0], dtype=np.int8)
        # bbox_mask = box.astype(np.bool)

        # img_data[bbox_mask] = img_data[bbox_mask] * 0.5 + color_mask * 0.5
        cv2.rectangle(img_data, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 255, 0), 3)
    
    return img_data, path

至此,我们实现了单张图像的所有业务逻辑。

多线程计算所有图像结果

通过multiprocessing启动一个进程池来加速结果计算。

def eval_multiprocessing(img_ids):
    from multiprocessing import Pool
    pool = Pool(processes=16)

    results = pool.map(eval_pr, img_ids)
    # 关闭进程池,表示不再接受新的任务
    pool.close()

    # 等待所有任务完成
    pool.join()
    return np.sum(np.array(results), axis=0)

计算PR结果

返回所有图像的TP和FP结果之后,就可以计算precision和recall值了。

gt, tp, fp = eval_multiprocessing(img_ids)
eps = np.finfo(np.float32).eps
recalls = tp / np.maximum(gt, eps)
precisions = tp / np.maximum((tp + fp), eps)

print("conf_thrs:{:.3f} iou_thrs:{:.3f}, gt:{:d}, TP={:d}, FP={:d}, P={:.3f}, R={:.3f}".format(conf_thrs, iou_thrs, gt, tp, fp, precisions, recalls))

最后,也附上整个实现代码,方便后续复现或者参考。

from multiprocessing import Pool
import os
import numpy as np
import json
from pycocotools.coco import COCO
import cv2
from pycocotools import mask as maskUtils

def bbox_overlaps(bboxes1, bboxes2, mode='iou'):
    """Calculate the ious between each bbox of bboxes1 and bboxes2.

    Args:
        bboxes1(ndarray): shape (n, 4)
        bboxes2(ndarray): shape (k, 4)
        mode(str): iou (intersection over union) or iof (intersection
            over foreground)

    Returns:
        ious(ndarray): shape (n, k)
    """

    assert mode in ['iou', 'iof']

    bboxes1 = bboxes1.astype(np.float32)
    bboxes2 = bboxes2.astype(np.float32)
    rows = bboxes1.shape[0]
    cols = bboxes2.shape[0]
    ious = np.zeros((rows, cols), dtype=np.float32)
    if rows * cols == 0:
        return ious
    exchange = False
    if bboxes1.shape[0] > bboxes2.shape[0]:
        bboxes1, bboxes2 = bboxes2, bboxes1
        ious = np.zeros((cols, rows), dtype=np.float32)
        exchange = True
    area1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * (bboxes1[:, 3] - bboxes1[:, 1] + 1)
    area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * (bboxes2[:, 3] - bboxes2[:, 1] + 1)
    for i in range(bboxes1.shape[0]):
        x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0])
        y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1])
        x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2])
        y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3])
        overlap = np.maximum(x_end - x_start + 1, 0) * np.maximum(y_end - y_start + 1, 0)
        if mode == 'iou':
            union = area1[i] + area2 - overlap
        else:
            union = area1[i] if not exchange else area2
        ious[i, :] = overlap / union
    if exchange:
        ious = ious.T
    return ious

def mask_wraper(bboxes1, bboxes2, mode='iou'):
    rows = bboxes1.shape[0]     # gt
    cols = bboxes2.shape[0]     # det
    ious = np.zeros((rows, cols), dtype=np.float32)
    if rows * cols == 0:
        return ious
    for i in range(rows):
        for j in range(cols):
            iou = mask_overlaps(bboxes1[i], bboxes2[j])
            ious[i, j] = iou
    return ious

def mask_overlaps(bboxes1, bboxes2, mode='iou'):

    assert mode in ['iou', 'iof']

    bboxes1 = bboxes1.astype(np.bool_)
    bboxes2 = bboxes2.astype(np.bool_)
    
    intersection = np.logical_and(bboxes1, bboxes2)
    union = np.logical_or(bboxes1, bboxes2)

    intersection_area = np.sum(intersection)
    union_area = np.sum(union)

    iou = intersection_area / union_area
    return iou


def tpfp_default(det_bboxes,
                 gt_bboxes,
                 gt_bboxes_ignore=None,
                 det_thrs_scores=None,
                 iou_thr=0.5,
                 area_ranges=None):
    """Check if detected bboxes are true positive or false positive.

    Args:
        det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).
        gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).
        gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,
            of shape (k, 4). Default: None
        iou_thr (float): IoU threshold to be considered as matched.
            Default: 0.5.
        area_ranges (list[tuple] | None): Range of bbox areas to be evaluated,
            in the format [(min1, max1), (min2, max2), ...]. Default: None.

    Returns:
        tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of
            each array is (num_scales, m).
    """
    # an indicator of ignored gts
    gt_ignore_inds = np.concatenate(
        (np.zeros(gt_bboxes.shape[0], dtype=np.bool),
         np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool)))
    # stack gt_bboxes and gt_bboxes_ignore for convenience
    # gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))

    num_dets = det_bboxes.shape[0]
    num_gts = gt_bboxes.shape[0]
    if area_ranges is None:
        area_ranges = [(None, None)]
    num_scales = len(area_ranges)
    # tp and fp are of shape (num_scales, num_gts), each row is tp or fp of
    # a certain scale
    tp = np.zeros((num_scales, num_dets), dtype=np.float32)
    fp = np.zeros((num_scales, num_dets), dtype=np.float32)

    # if there is no gt bboxes in this image, then all det bboxes
    # within area range are false positives
    if gt_bboxes.shape[0] == 0:
        if area_ranges == [(None, None)]:
            fp[...] = 1
        else:
            det_areas = (det_bboxes[:, 2] - det_bboxes[:, 0] + 1) * (
                det_bboxes[:, 3] - det_bboxes[:, 1] + 1)
            for i, (min_area, max_area) in enumerate(area_ranges):
                fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1
        return tp, fp

    # ious = bbox_overlaps(det_bboxes, gt_bboxes)
    # ious = mask_overlaps(det_bboxes, gt_bboxes)
    ious = mask_wraper(det_bboxes, gt_bboxes)
    # for each det, the max iou with all gts
    ious_max = ious.max(axis=1)
    # for each det, which gt overlaps most with it
    ious_argmax = ious.argmax(axis=1)
    # sort all dets in descending order by scores
    # sort_inds = np.argsort(-det_bboxes[:, -1])
    sort_inds = np.argsort(-det_thrs_scores)
    for k, (min_area, max_area) in enumerate(area_ranges):
        gt_covered = np.zeros(num_gts, dtype=bool)
        # if no area range is specified, gt_area_ignore is all False
        if min_area is None:
            gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
        else:
            gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0] + 1) * (
                gt_bboxes[:, 3] - gt_bboxes[:, 1] + 1)
            gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
        for i in sort_inds:
            if ious_max[i] >= iou_thr:
                matched_gt = ious_argmax[i]     # 得到对应的GT索引
                if not (gt_ignore_inds[matched_gt]
                        or gt_area_ignore[matched_gt]):
                    if not gt_covered[matched_gt]:
                        gt_covered[matched_gt] = True   # GT占位
                        tp[k, i] = 1            
                    else:
                        fp[k, i] = 1
                # otherwise ignore this detected bbox, tp = 0, fp = 0
            elif min_area is None:
                fp[k, i] = 1
            else:
                bbox = det_bboxes[i, :4]
                area = (bbox[2] - bbox[0] + 1) * (bbox[3] - bbox[1] + 1)
                if area >= min_area and area < max_area:
                    fp[k, i] = 1
    return tp, fp


def _poly2mask(mask_ann, img_h, img_w):
    """Private function to convert masks represented with polygon to
    bitmaps.

    Args:
        mask_ann (list | dict): Polygon mask annotation input.
        img_h (int): The height of output mask.
        img_w (int): The width of output mask.

    Returns:
        numpy.ndarray: The decode bitmap mask of shape (img_h, img_w).
    """

    if isinstance(mask_ann, list):
        # polygon -- a single object might consist of multiple parts
        # we merge all parts into one mask rle code
        rles = maskUtils.frPyObjects(mask_ann, img_h, img_w)
        rle = maskUtils.merge(rles)
    elif isinstance(mask_ann['counts'], list):
        # uncompressed RLE
        rle = maskUtils.frPyObjects(mask_ann, img_h, img_w)
    else:
        # rle
        rle = mask_ann
    mask = maskUtils.decode(rle)
    return mask



def construct_det_results(det_json_path):

    results = dict()
    bbox_results = dict()
    scores  = dict()
    with open(det_json_path) as f:
        json_data = json.load(f)
    for info in json_data:
        img_id = info["image_id"]
        if img_id not in results:
            results[img_id] = list()
            scores[img_id] = list()
            bbox_results[img_id] = list()
        bbox = info["bbox"]
        x1, y1, x2, y2 = bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]
        segm = [[x1, y1, x2, y1, x2, y2, x1, y2]]
        # mask = _poly2mask(segm, img_h=1544, img_w=2064)
        score = info["score"]
        # results[img_id].append([x1, y1, x2, y2, score])
        results[img_id].append(segm)
        bbox_results[img_id].append([x1, y1, x2, y2])
        scores[img_id].append(score)
    return results, scores, bbox_results
    
    
def construct_gt_results(gt_json_path):

    results = dict()
    bbox_results = dict()
    cocoGt = COCO(annotation_file=gt_json_path)
    # cat_ids = cocoGt.getCatIds()
    img_ids = cocoGt.getImgIds()
    for id in img_ids:
        anno_ids = cocoGt.getAnnIds(imgIds=[id])
        
        annotations = cocoGt.loadAnns(ids=anno_ids)
        for info in annotations:
            img_id = info["image_id"]
            if img_id not in results:
                results[img_id] = list()
                bbox_results[img_id] = list()
            bbox = info["bbox"]
            x1, y1, x2, y2 = bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]
            # results[img_id].append([x1, y1, x2, y2])
            # mask = _poly2mask(info["segmentation"], img_h=1544, img_w=2064)
            results[img_id].append(info["segmentation"])
            bbox_results[img_id].append([x1, y1, x2, y2])
    return results, img_ids, cocoGt, bbox_results



def draw_bbox(img_id, cocoGt, det_bboxes, gt_bboxes):
    path = cocoGt.loadImgs(ids=[img_id])[0]["file_name"]
    img_path = os.path.join(IMG_ROOT, path)
    img_data = cv2.imread(img_path)
    for box in det_bboxes:
        # color_mask = (0, 0, 255)
        # color_mask = np.array([0, 0, 255], dtype=np.int8)
        # bbox_mask = box.astype(np.bool)
        cv2.rectangle(img_data, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 0, 255), 3)
        # img_data[bbox_mask] = img_data[bbox_mask] * 0.5 + color_mask * 0.5
    for box in gt_bboxes:
        # color_mask = np.array([0, 255, 0], dtype=np.int8)
        # bbox_mask = box.astype(np.bool)

        # img_data[bbox_mask] = img_data[bbox_mask] * 0.5 + color_mask * 0.5
        cv2.rectangle(img_data, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 255, 0), 3)
    
    return img_data, path

def eval_pr(img_id):
    tp, fp, gt = 0, 0, 0
    gt_bboxes, gt_ignore = [], []
    det_bboxes = list()
    gt_bboxes = list()
    det_thrs_scores = list()
    
    plot_det_bboxes = list()
    plot_gt_bboxes  = list()
    
    if img_id in det_results:
        # for dt in det_results[img_id]:
        for idx, score in enumerate(det_scores[img_id]):
            # score = dt[-1]
            if score > conf_thrs:
                mask = _poly2mask(det_results[img_id][idx], img_h=1544, img_w=2064)
                det_bboxes.append(mask)
                det_thrs_scores.append(score)
                plot_det_bboxes.append(det_tmp_bboxes[img_id][idx])
    if img_id in gt_results:     
        for segm in gt_results[img_id]:
            mask = _poly2mask(segm, img_h=1544, img_w=2064)   
            gt_bboxes.append(mask)
        plot_gt_bboxes = gt_tmp_bboxes[img_id]
            
    det_bboxes = np.array(det_bboxes)
    gt_bboxes = np.array(gt_bboxes)
    det_thrs_scores = np.array(det_thrs_scores)
    gt_ignore = np.array(gt_ignore).reshape(-1, 4)
    
    if len(gt_bboxes) > 0:
        if len(det_bboxes) == 0:
            tp, fp = 0, 0 
        else:
            tp, fp = tpfp_default(det_bboxes, gt_bboxes, gt_ignore, det_thrs_scores, iou_thrs)
            tp, fp = np.sum(tp == 1), np.sum(fp == 1)
        gt = len(gt_bboxes)
        
    else:
        fp = len(det_bboxes)
        
        
    if VIS and (fp > 0 or tp < gt):
        img_data, path = draw_bbox(img_id=img_id, cocoGt=cocoGt, det_bboxes=plot_det_bboxes, gt_bboxes=plot_gt_bboxes)
        if fp > 0:
            save_dir = os.path.join(VIS_ROOT, "tmp/FP/")
            os.makedirs(save_dir, exist_ok=True)
            cv2.imwrite(os.path.join(save_dir, os.path.basename(path)+".jpg"), img_data, [int(cv2.IMWRITE_JPEG_QUALITY), 30])
        if tp < gt:
            save_dir = os.path.join(VIS_ROOT, "tmp/FN/")
            os.makedirs(save_dir, exist_ok=True)
            cv2.imwrite(os.path.join(save_dir, os.path.basename(path)+".jpg"), img_data,
                        [int(cv2.IMWRITE_JPEG_QUALITY), 30])
    return gt, tp, fp

    
def eval_multiprocessing(img_ids):
    from multiprocessing import Pool
    pool = Pool(processes=16)

    results = pool.map(eval_pr, img_ids)
    # 关闭进程池,表示不再接受新的任务
    pool.close()

    # 等待所有任务完成
    pool.join()
    return np.sum(np.array(results), axis=0)



if __name__ == '__main__':
    VIS = 1
    IMG_ROOT = "gaotie_data"
    VIS_ROOT = 'badcase-vis-test-2/'

    conf_thrs = 0.5
    iou_thrs  = 0.001
    det_json_path = "results.bbox.json"
    gt_json_path  = "datasets/gaotie_test_data/annotations/test5_seg_removed.json"
    det_results, det_scores, det_tmp_bboxes = construct_det_results(det_json_path)
    gt_results, img_ids, cocoGt, gt_tmp_bboxes  = construct_gt_results(gt_json_path)

    gt, tp, fp = eval_multiprocessing(img_ids)
    eps = np.finfo(np.float32).eps
    recalls = tp / np.maximum(gt, eps)
    precisions = tp / np.maximum((tp + fp), eps)
    
    print("conf_thrs:{:.3f} iou_thrs:{:.3f}, gt:{:d}, TP={:d}, FP={:d}, P={:.3f}, R={:.3f}".format(conf_thrs, iou_thrs, gt, tp, fp, precisions, recalls))
    

总结

本文针对目标检测任务中GT存在多边形情况下给出了如下计算数据集的PR结果,基于mask来计算IoU,与语义分割计算IoU的思路一致,最后也给出了所有的实现代码作为参考。

文章来源:https://blog.csdn.net/hello_dear_you/article/details/134894294
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。