Python实现FA萤火虫优化算法优化XGBoost分类模型(XGBClassifier算法)项目实战

2023-12-13 16:51:38

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , 作为最新的群智能优化算法之一,该算法具有更好的收敛速度和收敛精度,且易于工程实现等优点。

本项目通过FA萤火虫优化算法优化XGBoost分类模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1?用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

??

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

????????

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码: ?

3.3?数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

??

关键代码如下: ????

4.探索性数据分析

4.1?y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。 ??

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建FA萤火虫优化算法优化XGBoost分类模型

主要使用FA萤火虫优化算法优化XGBoost分类算法,用于目标分类。

6.1 FA萤火虫优化算法寻找最优的参数值???

最优参数:

???

6.2 最优参数值构建模型

编号

模型名称

参数

1

XGBoost分类模型

n_estimators=best_n_estimators

2

learning_rate=best_learning_rate

7.模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

模型名称

指标名称

指标值

测试集

XGBoost分类模型

准确率

0.8400

查准率

0.8408

查全率

0.8408

F1分值

0.8408

从上表可以看出,F1分值为0.8408,说明模型效果较好。

关键代码如下: ?

7.2 分类报告

??????

从上图可以看出,分类为0的F1分值为0.84;分类为1的F1分值为0.84。

7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有32个样本;实际为1预测不为1的 有32个样本,整体预测准确率良好。 ???

8.结论与展望

综上所述,本文采用了FA萤火虫优化算法寻找XGBoost算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

链接:https://pan.baidu.com/s/1YSWWhDN8YFdlqPhCoCYNRg 
提取码:7exh

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


?

文章来源:https://blog.csdn.net/weixin_42163563/article/details/134841048
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。