陷波器滤波参数推导
1. 定义技术指标
- 采样频率 fs = 20KHz
- 中心频率 fc = 100Hz
- 陷波宽度 band(B) = 20Hz
- 陷波深度 depth = 40db
2. 计算参数
陷波器的标准传递函数为:
H
(
s
)
=
s
2
+
2
ξ
1
ω
c
+
ω
c
2
s
2
+
2
ξ
2
ω
c
+
ω
c
2
(1)
H(s) = \frac{s^2+2\xi_1 \omega_c+\omega_c^2}{s^2+2\xi_2 \omega_c+\omega_c^2}\tag{1}
H(s)=s2+2ξ2?ωc?+ωc2?s2+2ξ1?ωc?+ωc2??(1)
其中
ω
c
\omega_c
ωc?为陷波频率,
ξ
1
,
ξ
2
\xi_1,\xi_2
ξ1?,ξ2?为陷波系数.
用双线性变换法离散化(1)式可得(参考<常见三种陷波滤波器(Notch Filter)的离散化设计>):
Y
(
z
)
=
n
0
+
n
1
z
?
1
+
n
2
z
?
2
d
0
+
d
1
z
?
1
+
d
2
z
?
2
Y(z)=\frac{n_0+n_1z^{-1}+n_2z^{-2}}{d_0+d_1z^{-1}+d_2z^{-2}}
Y(z)=d0?+d1?z?1+d2?z?2n0?+n1?z?1+n2?z?2?
其中:
n
0
=
ω
c
2
T
s
2
+
4
T
s
ξ
2
ω
c
+
4
n_0=\omega_c^2T_s^2+4T_s\xi_2\omega_c+4
n0?=ωc2?Ts2?+4Ts?ξ2?ωc?+4
n
1
=
2
ω
c
2
T
s
2
?
8
n_1=2\omega_c^2T_s^2-8
n1?=2ωc2?Ts2??8
n
2
=
ω
c
2
T
s
2
?
4
T
s
ξ
2
ω
c
+
4
n_2=\omega_c^2T_s^2-4T_s\xi_2\omega_c+4
n2?=ωc2?Ts2??4Ts?ξ2?ωc?+4
d
0
=
ω
c
2
T
s
2
+
4
T
s
ξ
1
ω
c
+
4
d_0=\omega_c^2T_s^2+4T_s\xi_1\omega_c+4
d0?=ωc2?Ts2?+4Ts?ξ1?ωc?+4
d
1
=
2
ω
c
2
T
s
2
?
8
d_1=2\omega_c^2T_s^2-8
d1?=2ωc2?Ts2??8
d
2
=
ω
c
2
T
s
2
?
4
T
s
ξ
1
ω
c
+
4
d_2=\omega_c^2T_s^2-4T_s\xi_1\omega_c+4
d2?=ωc2?Ts2??4Ts?ξ1?ωc?+4
为了补偿离散化带来的频率畸变,将系数中的
ω
c
\omega_c
ωc?用
2
T
s
tan
?
ω
c
T
s
/
2
\frac{2}{T_s}\tan{\omega_cT_s/2}
Ts?2?tanωc?Ts?/2替代,并简化,可得(
d
,
n
d,n
d,n同除了4):
n
0
=
tan
?
2
(
π
f
c
f
s
)
+
2
ξ
2
tan
?
(
π
f
c
f
s
)
+
1
n_0=\tan^2(\frac{\pi f_c}{f_s})+2\xi_2\tan(\frac{\pi f_c}{f_s})+1
n0?=tan2(fs?πfc??)+2ξ2?tan(fs?πfc??)+1
n
1
=
2
tan
?
2
(
π
f
c
f
s
)
?
2
n_1=2\tan^2(\frac{\pi f_c}{f_s})-2
n1?=2tan2(fs?πfc??)?2
n
2
=
tan
?
2
(
π
f
c
f
s
)
?
2
ξ
2
tan
?
(
π
f
c
f
s
)
+
1
n_2=\tan^2(\frac{\pi f_c}{f_s})-2\xi_2\tan(\frac{\pi f_c}{f_s})+1
n2?=tan2(fs?πfc??)?2ξ2?tan(fs?πfc??)+1
d
0
=
tan
?
2
(
π
f
c
f
s
)
+
2
ξ
1
tan
?
(
π
f
c
f
s
)
+
1
d_0=\tan^2(\frac{\pi f_c}{f_s})+2\xi_1\tan(\frac{\pi f_c}{f_s})+1
d0?=tan2(fs?πfc??)+2ξ1?tan(fs?πfc??)+1
d
1
=
2
tan
?
2
(
π
f
c
f
s
)
?
2
d_1=2\tan^2(\frac{\pi f_c}{f_s})-2
d1?=2tan2(fs?πfc??)?2
d
2
=
tan
?
2
(
π
f
c
f
s
)
?
2
ξ
1
tan
?
(
π
f
c
f
s
)
+
1
d_2=\tan^2(\frac{\pi f_c}{f_s})-2\xi_1\tan(\frac{\pi f_c}{f_s})+1
d2?=tan2(fs?πfc??)?2ξ1?tan(fs?πfc??)+1
根据参考文献参考<常见三种陷波滤波器(Notch Filter)的离散化设计>的推导, ξ 1 , ξ 2 \xi_1,\xi_2 ξ1?,ξ2?与陷波器参数之间存在如下关系:
ξ 1 = 1 ? 4 π 2 B 2 ω c 2 + 1 4 d e p t h 2 ? 2 = 1 ? ( B f c ) 2 + 1 4 d e p t h 2 ? 2 (2) \xi_1=\sqrt{\frac{1-\sqrt{\frac{4\pi^2B^2}{\omega_c^2}+1}}{4depth^2-2}}=\sqrt{\frac{1-\sqrt{(\frac{B}{f_c})^2+1}}{4depth^2-2}}\tag{2} ξ1?=4depth2?21?ωc2?4π2B2?+1???=4depth2?21?(fc?B?)2+1???(2)
ξ 2 = d e p t h ? ξ 1 \xi_2=depth*\xi_1 ξ2?=depth?ξ1?
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!