diffusers-训练自己的模型
2023-12-21 08:16:25
一、搭建dataset
基于datasets这个库创建的dataloader,底层代码还待探索
二、修改模型结构(非必要)
尽量可以利用已有的预训练权重去训练模型,但是权重并不一定能够完全是适配,所以还需要自己来视情况做修改,未能加载预训练权重的那一部分参数必须要重新开始训练,不存在finetune一说
三、无条件样本生成
先搭建环境
train_unconditional.py这个代码待细看
train_unconditional.py中创建的unet
model = UNet2DModel(
sample_size=args.resolution,
in_channels=3,
out_channels=3,
layers_per_block=2,
block_out_channels=(128, 128, 256, 256, 512, 512),
down_block_types=(
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D",
"DownBlock2D",
),
up_block_types=(
"UpBlock2D",
"AttnUpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
),
)
# Initialize the scheduler
accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())
if accepts_prediction_type:
noise_scheduler = DDPMScheduler(
num_train_timesteps=args.ddpm_num_steps,
beta_schedule=args.ddpm_beta_schedule,
prediction_type=args.prediction_type,
)
else:
noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)
# Initialize the optimizer
optimizer = torch.optim.AdamW(
model.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
默认的优化器和采样器
dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
augmentations = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
读取数据模块
accelerate launch train_unconditional.py \
--dataset_name="huggan/flowers-102-categories" \
--output_dir="ddpm-ema-flowers-64" \
--mixed_precision="fp16" \
--push_to_hub
# 单卡训
accelerate launch --multi_gpu train_unconditional.py \
--dataset_name="huggan/flowers-102-categories" \
--output_dir="ddpm-ema-flowers-64" \
--mixed_precision="fp16" \
--push_to_hub
多卡训
预测代码(小疑问,这个路径咋确定的呢?)
四、
文章来源:https://blog.csdn.net/qq_45692660/article/details/135119717
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!