C# Onnx yolov8n csgo player detection
目录
C# Onnx yolov8n csgo player detection
效果

模型信息
Model Properties
 -------------------------
 date:2023-12-22T15:01:08.014205
 author:Ultralytics
 task:detect
 license:AGPL-3.0 https://ultralytics.com/license
 version:8.0.172
 stride:32
 batch:1
 imgsz:[640, 640]
 names:{0: 'ct', 1: 'cthead', 2: 't', 3: 'thead'}
 ---------------------------------------------------------------
Inputs
 -------------------------
 name:images
 tensor:Float[1, 3, 640, 640]
 ---------------------------------------------------------------
Outputs
 -------------------------
 name:output0
 tensor:Float[1, 8, 8400]
 ---------------------------------------------------------------
项目

代码
using Microsoft.ML.OnnxRuntime;
 using Microsoft.ML.OnnxRuntime.Tensors;
 using OpenCvSharp;
 using System;
 using System.Collections.Generic;
 using System.Drawing;
 using System.Drawing.Imaging;
 using System.Linq;
 using System.Windows.Forms;
namespace Onnx_Yolov8_Demo
 {
 ? ? public partial class Form1 : Form
 ? ? {
 ? ? ? ? public Form1()
 ? ? ? ? {
 ? ? ? ? ? ? InitializeComponent();
 ? ? ? ? }
? ? ? ? string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
 ? ? ? ? string image_path = "";
 ? ? ? ? string startupPath;
 ? ? ? ? string classer_path;
 ? ? ? ? DateTime dt1 = DateTime.Now;
 ? ? ? ? DateTime dt2 = DateTime.Now;
 ? ? ? ? string model_path;
 ? ? ? ? Mat image;
 ? ? ? ? DetectionResult result_pro;
 ? ? ? ? Mat result_image;
 ? ? ? ? Result result;
? ? ? ? SessionOptions options;
 ? ? ? ? InferenceSession onnx_session;
 ? ? ? ? Tensor<float> input_tensor;
 ? ? ? ? List<NamedOnnxValue> input_container;
 ? ? ? ? IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
 ? ? ? ? DisposableNamedOnnxValue[] results_onnxvalue;
? ? ? ? Tensor<float> result_tensors;
? ? ? ? private void button1_Click(object sender, EventArgs e)
 ? ? ? ? {
 ? ? ? ? ? ? OpenFileDialog ofd = new OpenFileDialog();
 ? ? ? ? ? ? ofd.Filter = fileFilter;
 ? ? ? ? ? ? if (ofd.ShowDialog() != DialogResult.OK) return;
 ? ? ? ? ? ? pictureBox1.Image = null;
 ? ? ? ? ? ? image_path = ofd.FileName;
 ? ? ? ? ? ? pictureBox1.Image = new Bitmap(image_path);
 ? ? ? ? ? ? textBox1.Text = "";
 ? ? ? ? ? ? image = new Mat(image_path);
 ? ? ? ? ? ? pictureBox2.Image = null;
 ? ? ? ? }
? ? ? ? private void button2_Click(object sender, EventArgs e)
 ? ? ? ? {
 ? ? ? ? ? ? if (image_path == "")
 ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? return;
 ? ? ? ? ? ? }
? ? ? ? ? ? button2.Enabled = false;
 ? ? ? ? ? ? pictureBox2.Image = null;
 ? ? ? ? ? ? textBox1.Text = "";
? ? ? ? ? ? //图片缩放
 ? ? ? ? ? ? image = new Mat(image_path);
 ? ? ? ? ? ? int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
 ? ? ? ? ? ? Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
 ? ? ? ? ? ? Rect roi = new Rect(0, 0, image.Cols, image.Rows);
 ? ? ? ? ? ? image.CopyTo(new Mat(max_image, roi));
? ? ? ? ? ? float[] result_array = new float[8400 * 84];
 ? ? ? ? ? ? float[] factors = new float[2];
 ? ? ? ? ? ? factors[0] = factors[1] = (float)(max_image_length / 640.0);
? ? ? ? ? ? // 将图片转为RGB通道
 ? ? ? ? ? ? Mat image_rgb = new Mat();
 ? ? ? ? ? ? Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
 ? ? ? ? ? ? Mat resize_image = new Mat();
 ? ? ? ? ? ? Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
? ? ? ? ? ? // 输入Tensor
 ? ? ? ? ? ? for (int y = 0; y < resize_image.Height; y++)
 ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? for (int x = 0; x < resize_image.Width; x++)
 ? ? ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? ? ? input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
 ? ? ? ? ? ? ? ? ? ? input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
 ? ? ? ? ? ? ? ? ? ? input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
 ? ? ? ? ? ? ? ? }
 ? ? ? ? ? ? }
? ? ? ? ? ? //将 input_tensor 放入一个输入参数的容器,并指定名称
 ? ? ? ? ? ? input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
? ? ? ? ? ? dt1 = DateTime.Now;
 ? ? ? ? ? ? //运行 Inference 并获取结果
 ? ? ? ? ? ? result_infer = onnx_session.Run(input_container);
 ? ? ? ? ? ? dt2 = DateTime.Now;
? ? ? ? ? ? // 将输出结果转为DisposableNamedOnnxValue数组
 ? ? ? ? ? ? results_onnxvalue = result_infer.ToArray();
? ? ? ? ? ? // 读取第一个节点输出并转为Tensor数据
 ? ? ? ? ? ? result_tensors = results_onnxvalue[0].AsTensor<float>();
? ? ? ? ? ? result_array = result_tensors.ToArray();
? ? ? ? ? ? resize_image.Dispose();
 ? ? ? ? ? ? image_rgb.Dispose();
? ? ? ? ? ? result_pro = new DetectionResult(classer_path, factors);
 ? ? ? ? ? ? result = result_pro.process_result(result_array);
 ? ? ? ? ? ? result_image = result_pro.draw_result(result, image.Clone());
? ? ? ? ? ? if (!result_image.Empty())
 ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
 ? ? ? ? ? ? ? ? textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
 ? ? ? ? ? ? }
 ? ? ? ? ? ? else
 ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? textBox1.Text = "无信息";
 ? ? ? ? ? ? }
? ? ? ? ? ? button2.Enabled = true;
 ? ? ? ? }
? ? ? ? private void Form1_Load(object sender, EventArgs e)
 ? ? ? ? {
 ? ? ? ? ? ? startupPath = System.Windows.Forms.Application.StartupPath;
? ? ? ? ? ? model_path = "model/yolov8n-csgo-player-detection.onnx";
 ? ? ? ? ? ? classer_path = "model/lable.txt";
? ? ? ? ? ? // 创建输出会话,用于输出模型读取信息
 ? ? ? ? ? ? options = new SessionOptions();
 ? ? ? ? ? ? options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
 ? ? ? ? ? ? options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
? ? ? ? ? ? // 创建推理模型类,读取本地模型文件
 ? ? ? ? ? ? onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
? ? ? ? ? ? // 输入Tensor
 ? ? ? ? ? ? input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
 ? ? ? ? ? ? // 创建输入容器
 ? ? ? ? ? ? input_container = new List<NamedOnnxValue>();
? ? ? ? ? ? image_path = "test_img/1.jpg";
 ? ? ? ? ? ? pictureBox1.Image = new Bitmap(image_path);
 ? ? ? ? ? ? image = new Mat(image_path);
? ? ? ? }
? ? ? ? private void pictureBox1_DoubleClick(object sender, EventArgs e)
 ? ? ? ? {
 ? ? ? ? ? ? Common.ShowNormalImg(pictureBox1.Image);
 ? ? ? ? }
? ? ? ? private void pictureBox2_DoubleClick(object sender, EventArgs e)
 ? ? ? ? {
 ? ? ? ? ? ? Common.ShowNormalImg(pictureBox2.Image);
 ? ? ? ? }
? ? ? ? SaveFileDialog sdf = new SaveFileDialog();
 ? ? ? ? private void button3_Click(object sender, EventArgs e)
 ? ? ? ? {
 ? ? ? ? ? ? if (pictureBox2.Image == null)
 ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? return;
 ? ? ? ? ? ? }
 ? ? ? ? ? ? Bitmap output = new Bitmap(pictureBox2.Image);
 ? ? ? ? ? ? sdf.Title = "保存";
 ? ? ? ? ? ? sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
 ? ? ? ? ? ? if (sdf.ShowDialog() == DialogResult.OK)
 ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? switch (sdf.FilterIndex)
 ? ? ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? ? ? case 1:
 ? ? ? ? ? ? ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? output.Save(sdf.FileName, ImageFormat.Jpeg);
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? break;
 ? ? ? ? ? ? ? ? ? ? ? ? }
 ? ? ? ? ? ? ? ? ? ? case 2:
 ? ? ? ? ? ? ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? output.Save(sdf.FileName, ImageFormat.Png);
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? break;
 ? ? ? ? ? ? ? ? ? ? ? ? }
 ? ? ? ? ? ? ? ? ? ? case 3:
 ? ? ? ? ? ? ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? output.Save(sdf.FileName, ImageFormat.Bmp);
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? break;
 ? ? ? ? ? ? ? ? ? ? ? ? }
 ? ? ? ? ? ? ? ? ? ? case 4:
 ? ? ? ? ? ? ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? output.Save(sdf.FileName, ImageFormat.Emf);
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? break;
 ? ? ? ? ? ? ? ? ? ? ? ? }
 ? ? ? ? ? ? ? ? ? ? case 5:
 ? ? ? ? ? ? ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? output.Save(sdf.FileName, ImageFormat.Exif);
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? break;
 ? ? ? ? ? ? ? ? ? ? ? ? }
 ? ? ? ? ? ? ? ? ? ? case 6:
 ? ? ? ? ? ? ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? output.Save(sdf.FileName, ImageFormat.Gif);
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? break;
 ? ? ? ? ? ? ? ? ? ? ? ? }
 ? ? ? ? ? ? ? ? ? ? case 7:
 ? ? ? ? ? ? ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? output.Save(sdf.FileName, ImageFormat.Icon);
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? break;
 ? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? ? ? case 8:
 ? ? ? ? ? ? ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? output.Save(sdf.FileName, ImageFormat.Tiff);
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? break;
 ? ? ? ? ? ? ? ? ? ? ? ? }
 ? ? ? ? ? ? ? ? ? ? case 9:
 ? ? ? ? ? ? ? ? ? ? ? ? {
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? output.Save(sdf.FileName, ImageFormat.Wmf);
 ? ? ? ? ? ? ? ? ? ? ? ? ? ? break;
 ? ? ? ? ? ? ? ? ? ? ? ? }
 ? ? ? ? ? ? ? ? }
 ? ? ? ? ? ? ? ? MessageBox.Show("保存成功,位置:" + sdf.FileName);
 ? ? ? ? ? ? }
 ? ? ? ? }
 ? ? }
 }
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;
namespace Onnx_Yolov8_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        string classer_path;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        DetectionResult result_pro;
        Mat result_image;
        Result result;
        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;
        Tensor<float> result_tensors;
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }
        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";
            //图片缩放
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));
            float[] result_array = new float[8400 * 84];
            float[] factors = new float[2];
            factors[0] = factors[1] = (float)(max_image_length / 640.0);
            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
            // 输入Tensor
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
                    input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
                    input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
                }
            }
            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;
            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();
            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();
            result_array = result_tensors.ToArray();
            resize_image.Dispose();
            image_rgb.Dispose();
            result_pro = new DetectionResult(classer_path, factors);
            result = result_pro.process_result(result_array);
            result_image = result_pro.draw_result(result, image.Clone());
            if (!result_image.Empty())
            {
                pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
            }
            else
            {
                textBox1.Text = "无信息";
            }
            button2.Enabled = true;
        }
        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = "model/yolov8n-csgo-player-detection.onnx";
            classer_path = "model/lable.txt";
            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();
            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }
        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }
        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }
                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }
    }
}
下载
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!