代码随想录算法训练营Day39 | 动态规划(2/17) LeetCode 62.不同路径 63. 不同路径 II
来到动态规划的第二天练习了!
第一题
There is a robot on an?
m x n
?grid. The robot is initially located at the?top-left corner?(i.e.,?grid[0][0]
). The robot tries to move to the?bottom-right corner?(i.e.,?grid[m - 1][n - 1]
). The robot can only move either down or right at any point in time.Given the two integers?
m
?and?n
, return?the number of possible unique paths that the robot can take to reach the bottom-right corner.The test cases are generated so that the answer will be less than or equal to?
2 * 10^9
.
想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。
可以用递归的办法,很简洁的写出代码,但是会超时。
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
if m == 1 or n == 1:
return 1
return self.uniquePaths(m - 1, n) + self.uniquePaths(m, n - 1)
用动态规划写出的代码如下:
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
dp = [[0] * n for _ in range(m)]
for i in range(m):
dp[i][0] = 1
for j in range(n):
dp[0][j] = 1
for i in range(1, m):
for j in range(1, n):
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[m - 1][n - 1]
第二题
You are given an?
m x n
?integer array?grid
. There is a robot initially located at the?top-left corner?(i.e.,?grid[0][0]
). The robot tries to move to the?bottom-right corner?(i.e.,?grid[m - 1][n - 1]
). The robot can only move either down or right at any point in time.An obstacle and space are marked as?
1
?or?0
?respectively in?grid
. A path that the robot takes cannot include?any?square that is an obstacle.Return?the number of possible unique paths that the robot can take to reach the bottom-right corner.
The testcases are generated so that the answer will be less than or equal to?
2 * 10^9
.
这道题和上一题不同的是,加了障碍,有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。
if obstacleGrid[i][j] == 0:
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
所以完整代码为:
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
m = len(obstacleGrid)
n = len(obstacleGrid[0])
if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1:
return 0
dp = [[0] * n for _ in range(m)]
for i in range(m):
if obstacleGrid[i][0] == 0:
dp[i][0] = 1
else:
break
for j in range(n):
if obstacleGrid[0][j] == 0:
dp[0][j] = 1
else:
break
for i in range(1, m):
for j in range(1, n):
if obstacleGrid[i][j] == 1:
continue
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[m - 1][n - 1]
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!