C# OpenCvSharp DNN FreeYOLO 密集行人检测
目录
C# OpenCvSharp DNN FreeYOLO 密集行人检测
效果
模型信息
Inputs
-------------------------
name:input
tensor:Float[1, 3, 192, 320]
---------------------------------------------------------------
Outputs
-------------------------
name:output
tensor:Float[1, 1260, 6]
---------------------------------------------------------------
项目
代码
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;
namespace OpenCvSharp_DNN_Demo
{
? ? public partial class frmMain : Form
? ? {
? ? ? ? public frmMain()
? ? ? ? {
? ? ? ? ? ? InitializeComponent();
? ? ? ? }
? ? ? ? string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
? ? ? ? string image_path = "";
? ? ? ? DateTime dt1 = DateTime.Now;
? ? ? ? DateTime dt2 = DateTime.Now;
? ? ? ? float confThreshold;
? ? ? ? float nmsThreshold;
? ? ? ? int num_stride = 3;
? ? ? ? float[] strides = new float[3] { 8.0f, 16.0f, 32.0f };
? ? ? ? string modelpath;
? ? ? ? int inpHeight;
? ? ? ? int inpWidth;
? ? ? ? List<string> class_names;
? ? ? ? int num_class;
? ? ? ? Net opencv_net;
? ? ? ? Mat BN_image;
? ? ? ? Mat image;
? ? ? ? Mat result_image;
? ? ? ? private void button1_Click(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? OpenFileDialog ofd = new OpenFileDialog();
? ? ? ? ? ? ofd.Filter = fileFilter;
? ? ? ? ? ? if (ofd.ShowDialog() != DialogResult.OK) return;
? ? ? ? ? ? pictureBox1.Image = null;
? ? ? ? ? ? pictureBox2.Image = null;
? ? ? ? ? ? textBox1.Text = "";
? ? ? ? ? ? image_path = ofd.FileName;
? ? ? ? ? ? pictureBox1.Image = new Bitmap(image_path);
? ? ? ? ? ? image = new Mat(image_path);
? ? ? ? }
? ? ? ? private void Form1_Load(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? confThreshold = 0.6f;
? ? ? ? ? ? nmsThreshold = 0.5f;
? ? ? ? ? ? modelpath = "model/yolo_free_huge_crowdhuman_192x320.onnx";
? ? ? ? ? ? inpHeight = 192;
? ? ? ? ? ? inpWidth = 320;
? ? ? ? ? ? opencv_net = CvDnn.ReadNetFromOnnx(modelpath);
? ? ? ? ? ? class_names = new List<string>();
? ? ? ? ? ? class_names.Add("person");
? ? ? ? ? ? num_class = 1;
? ? ? ? ? ? image_path = "test_img/1.jpg";
? ? ? ? ? ? pictureBox1.Image = new Bitmap(image_path);
? ? ? ? }
? ? ? ? private unsafe void button2_Click(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? if (image_path == "")
? ? ? ? ? ? {
? ? ? ? ? ? ? ? return;
? ? ? ? ? ? }
? ? ? ? ? ? textBox1.Text = "检测中,请稍等……";
? ? ? ? ? ? pictureBox2.Image = null;
? ? ? ? ? ? Application.DoEvents();
? ? ? ? ? ? image = new Mat(image_path);
? ? ? ? ? ? float ratio = Math.Min(1.0f * inpHeight / image.Rows, 1.0f * inpWidth / image.Cols);
? ? ? ? ? ? int neww = (int)(image.Cols * ratio);
? ? ? ? ? ? int newh = (int)(image.Rows * ratio);
? ? ? ? ? ? Mat dstimg = new Mat();
? ? ? ? ? ? Cv2.Resize(image, dstimg, new OpenCvSharp.Size(neww, newh));
? ? ? ? ? ? Cv2.CopyMakeBorder(dstimg, dstimg, 0, inpHeight - newh, 0, inpWidth - neww, BorderTypes.Constant);
? ? ? ? ? ? BN_image = CvDnn.BlobFromImage(dstimg);
? ? ? ? ? ? //配置图片输入数据
? ? ? ? ? ? opencv_net.SetInput(BN_image);
? ? ? ? ? ? //模型推理,读取推理结果
? ? ? ? ? ? Mat[] outs = new Mat[1] { new Mat() };
? ? ? ? ? ? string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();
? ? ? ? ? ? dt1 = DateTime.Now;
? ? ? ? ? ? opencv_net.Forward(outs, outBlobNames);
? ? ? ? ? ? dt2 = DateTime.Now;
? ? ? ? ? ? int num_proposal = outs[0].Size(1);
? ? ? ? ? ? int nout = outs[0].Size(2);
? ? ? ? ? ? float* pdata = (float*)outs[0].Data;
? ? ? ? ? ? List<float> confidences = new List<float>();
? ? ? ? ? ? List<Rect> boxes = new List<Rect>();
? ? ? ? ? ? List<int> classIds = new List<int>();
? ? ? ? ? ? for (int n = 0; n < num_stride; n++)
? ? ? ? ? ? {
? ? ? ? ? ? ? ? int num_grid_x = (int)Math.Ceiling(inpWidth / strides[n]);
? ? ? ? ? ? ? ? int num_grid_y = (int)Math.Ceiling(inpHeight / strides[n]);
? ? ? ? ? ? ? ? for (int i = 0; i < num_grid_y; i++)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? for (int j = 0; j < num_grid_x; j++)
? ? ? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? float box_score = pdata[4];
? ? ? ? ? ? ? ? ? ? ? ? int max_ind = 0;
? ? ? ? ? ? ? ? ? ? ? ? float max_class_socre = 0;
? ? ? ? ? ? ? ? ? ? ? ? for (int k = 0; k < num_class; k++)
? ? ? ? ? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? if (pdata[k + 5] > max_class_socre)
? ? ? ? ? ? ? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? max_class_socre = pdata[k + 5];
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? max_ind = k;
? ? ? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? ? ? ? ? max_class_socre = max_class_socre* box_score;
? ? ? ? ? ? ? ? ? ? ? ? max_class_socre = (float)Math.Sqrt(max_class_socre);
? ? ? ? ? ? ? ? ? ? ? ? if (max_class_socre > confThreshold)
? ? ? ? ? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? ? ? float cx = (0.5f + j + pdata[0]) * strides[n]; ?//cx
? ? ? ? ? ? ? ? ? ? ? ? ? ? float cy = (0.5f + i + pdata[1]) * strides[n]; ? //cy
? ? ? ? ? ? ? ? ? ? ? ? ? ? float w = (float)(Math.Exp(pdata[2]) * strides[n]); ? //w
? ? ? ? ? ? ? ? ? ? ? ? ? ? float h = (float)(Math.Exp(pdata[3]) * strides[n]); ?//h
? ? ? ? ? ? ? ? ? ? ? ? ? ? float xmin = (float)((cx - 0.5 * w) / ratio);
? ? ? ? ? ? ? ? ? ? ? ? ? ? float ymin = (float)((cy - 0.5 * h) / ratio);
? ? ? ? ? ? ? ? ? ? ? ? ? ? float xmax = (float)((cx + 0.5 * w) / ratio);
? ? ? ? ? ? ? ? ? ? ? ? ? ? float ymax = (float)((cy + 0.5 * h) / ratio);
? ? ? ? ? ? ? ? ? ? ? ? ? ? int left = (int)((cx - 0.5 * w) / ratio);
? ? ? ? ? ? ? ? ? ? ? ? ? ? int top = (int)((cy - 0.5 * h) / ratio);
? ? ? ? ? ? ? ? ? ? ? ? ? ? int width = (int)(w / ratio);
? ? ? ? ? ? ? ? ? ? ? ? ? ? int height = (int)(h / ratio);
? ? ? ? ? ? ? ? ? ? ? ? ? ? confidences.Add(max_class_socre);
? ? ? ? ? ? ? ? ? ? ? ? ? ? boxes.Add(new Rect(left, top, width, height));
? ? ? ? ? ? ? ? ? ? ? ? ? ? classIds.Add(max_ind);
? ? ? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? ? ? ? ? pdata += nout;
? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? }
? ? ? ? ? ? }
? ? ? ? ? ? int[] indices;
? ? ? ? ? ? CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);
? ? ? ? ? ? result_image = image.Clone();
? ? ? ? ? ? for (int ii = 0; ii < indices.Length; ++ii)
? ? ? ? ? ? {
? ? ? ? ? ? ? ? int idx = indices[ii];
? ? ? ? ? ? ? ? Rect box = boxes[idx];
? ? ? ? ? ? ? ? Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);
? ? ? ? ? ? ? ? string label = class_names[classIds[idx]] + ":" + confidences[idx].ToString("0.00");
? ? ? ? ? ? ? ? Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y - 5), HersheyFonts.HersheySimplex, 1, new Scalar(0, 0, 255), 2);
? ? ? ? ? ? }
? ? ? ? ? ? pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
? ? ? ? ? ? textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
? ? ? ? }
? ? ? ? private void pictureBox2_DoubleClick(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? Common.ShowNormalImg(pictureBox2.Image);
? ? ? ? }
? ? ? ? private void pictureBox1_DoubleClick(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? Common.ShowNormalImg(pictureBox1.Image);
? ? ? ? }
? ? }
}
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;
namespace OpenCvSharp_DNN_Demo
{
public partial class frmMain : Form
{
public frmMain()
{
InitializeComponent();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
float confThreshold;
float nmsThreshold;
int num_stride = 3;
float[] strides = new float[3] { 8.0f, 16.0f, 32.0f };
string modelpath;
int inpHeight;
int inpWidth;
List<string> class_names;
int num_class;
Net opencv_net;
Mat BN_image;
Mat image;
Mat result_image;
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
pictureBox2.Image = null;
textBox1.Text = "";
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
}
private void Form1_Load(object sender, EventArgs e)
{
confThreshold = 0.6f;
nmsThreshold = 0.5f;
modelpath = "model/yolo_free_huge_crowdhuman_192x320.onnx";
inpHeight = 192;
inpWidth = 320;
opencv_net = CvDnn.ReadNetFromOnnx(modelpath);
class_names = new List<string>();
class_names.Add("person");
num_class = 1;
image_path = "test_img/1.jpg";
pictureBox1.Image = new Bitmap(image_path);
}
private unsafe void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
textBox1.Text = "检测中,请稍等……";
pictureBox2.Image = null;
Application.DoEvents();
image = new Mat(image_path);
float ratio = Math.Min(1.0f * inpHeight / image.Rows, 1.0f * inpWidth / image.Cols);
int neww = (int)(image.Cols * ratio);
int newh = (int)(image.Rows * ratio);
Mat dstimg = new Mat();
Cv2.Resize(image, dstimg, new OpenCvSharp.Size(neww, newh));
Cv2.CopyMakeBorder(dstimg, dstimg, 0, inpHeight - newh, 0, inpWidth - neww, BorderTypes.Constant);
BN_image = CvDnn.BlobFromImage(dstimg);
//配置图片输入数据
opencv_net.SetInput(BN_image);
//模型推理,读取推理结果
Mat[] outs = new Mat[1] { new Mat() };
string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();
dt1 = DateTime.Now;
opencv_net.Forward(outs, outBlobNames);
dt2 = DateTime.Now;
int num_proposal = outs[0].Size(1);
int nout = outs[0].Size(2);
float* pdata = (float*)outs[0].Data;
List<float> confidences = new List<float>();
List<Rect> boxes = new List<Rect>();
List<int> classIds = new List<int>();
for (int n = 0; n < num_stride; n++)
{
int num_grid_x = (int)Math.Ceiling(inpWidth / strides[n]);
int num_grid_y = (int)Math.Ceiling(inpHeight / strides[n]);
for (int i = 0; i < num_grid_y; i++)
{
for (int j = 0; j < num_grid_x; j++)
{
float box_score = pdata[4];
int max_ind = 0;
float max_class_socre = 0;
for (int k = 0; k < num_class; k++)
{
if (pdata[k + 5] > max_class_socre)
{
max_class_socre = pdata[k + 5];
max_ind = k;
}
}
max_class_socre = max_class_socre* box_score;
max_class_socre = (float)Math.Sqrt(max_class_socre);
if (max_class_socre > confThreshold)
{
float cx = (0.5f + j + pdata[0]) * strides[n]; //cx
float cy = (0.5f + i + pdata[1]) * strides[n]; //cy
float w = (float)(Math.Exp(pdata[2]) * strides[n]); //w
float h = (float)(Math.Exp(pdata[3]) * strides[n]); //h
float xmin = (float)((cx - 0.5 * w) / ratio);
float ymin = (float)((cy - 0.5 * h) / ratio);
float xmax = (float)((cx + 0.5 * w) / ratio);
float ymax = (float)((cy + 0.5 * h) / ratio);
int left = (int)((cx - 0.5 * w) / ratio);
int top = (int)((cy - 0.5 * h) / ratio);
int width = (int)(w / ratio);
int height = (int)(h / ratio);
confidences.Add(max_class_socre);
boxes.Add(new Rect(left, top, width, height));
classIds.Add(max_ind);
}
pdata += nout;
}
}
}
int[] indices;
CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);
result_image = image.Clone();
for (int ii = 0; ii < indices.Length; ++ii)
{
int idx = indices[ii];
Rect box = boxes[idx];
Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);
string label = class_names[classIds[idx]] + ":" + confidences[idx].ToString("0.00");
Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y - 5), HersheyFonts.HersheySimplex, 1, new Scalar(0, 0, 255), 2);
}
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
}
private void pictureBox2_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox2.Image);
}
private void pictureBox1_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox1.Image);
}
}
}
下载
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!