onnxruntime和tensorrt多batch推理
2023-12-13 19:31:47
以lenet网络为例。
onnxruntime多batch推理
当batch size为2时,导出如下结构的onnx文件:
python推理:
import cv2
import numpy as np
import onnxruntime
img0 = cv2.imread("2.png", 0)
img1 = cv2.imread("10.png", 0)
blob0 = cv2.dnn.blobFromImage(img0, 1/255., size=(28,28), swapRB=True, crop=False)
blob1 = cv2.dnn.blobFromImage(img1, 1/255., size=(28,28), swapRB=True, crop=False)
onnx_session = onnxruntime.InferenceSession("lenet.onnx", providers=['CPUExecutionProvider'])
input_name = []
for node in onnx_session.get_inputs():
input_name.append(node.name)
output_name = []
for node in onnx_session.get_outputs():
output_name.append(node.name)
inputs = {}
for name in input_name:
inputs[name] = np.concatenate((blob0, blob1), axis=0)
outputs = onnx_session.run(None, inputs)[0]
print(np.argmax(outputs, axis=1))
C++推理:
#include <iostream>
#include <opencv2/opencv.hpp>
#include <onnxruntime_cxx_api.h>
int main(int argc, char* argv[])
{
Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "lenet");
Ort::SessionOptions session_options;
session_options.SetIntraOpNumThreads(1);
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
const wchar_t* model_path = L"lenet.onnx";
Ort::Session session(env, model_path, session_options);
Ort::AllocatorWithDefaultOptions allocator;
std::vector<const char*> input_node_names;
for (size_t i = 0; i < session.GetInputCount(); i++)
{
input_node_names.push_back(session.GetInputName(i, allocator));
}
std::vector<const char*> output_node_names;
for (size_t i = 0; i < session.GetOutputCount(); i++)
{
output_node_names.push_back(session.GetOutputName(i, allocator));
}
const size_t input_tensor_size = 2 * 1 * 28 * 28;
std::vector<float> input_tensor_values(input_tensor_size);
cv::Mat image0 = cv::imread("2.png", 0);
cv::Mat image1 = cv::imread("10.png", 0);
image0.convertTo(image0, CV_32F, 1.0 / 255);
image1.convertTo(image1, CV_32F, 1.0 / 255);
for (int i = 0; i < 28; i++)
{
for (int j = 0; j < 28; j++)
{
input_tensor_values[i * 28 + j] = image0.at<float>(i, j);
input_tensor_values[28 * 28 + i * 28 + j] = image1.at<float>(i, j);
}
}
std::vector<int64_t> input_node_dims = { 2, 1, 28, 28 };
auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_size, input_node_dims.data(), input_node_dims.size());
std::vector<Ort::Value> inputs;
inputs.push_back(std::move(input_tensor));
std::vector<Ort::Value> outputs = session.Run(Ort::RunOptions{ nullptr }, input_node_names.data(), inputs.data(), input_node_names.size(), output_node_names.data(), output_node_names.size());
const float* rawOutput = outputs[0].GetTensorData<float>();
std::vector<int64_t> outputShape = outputs[0].GetTensorTypeAndShapeInfo().GetShape();
size_t count = outputs[0].GetTensorTypeAndShapeInfo().GetElementCount();
std::vector<float> preds(rawOutput, rawOutput + count);
int predict_label0 = std::max_element(preds.begin(), preds.begin() + 10) - preds.begin();
int predict_label1 = std::max_element(preds.begin() + 10, preds.begin() + 20) - preds.begin() - 10;
std::cout << predict_label0 << std::endl;
std::cout << predict_label1 << std::endl;
return 0;
}
tensorrt多batch推理
python推理:
import cv2
import numpy as np
import tensorrt as trt
import pycuda.autoinit #负责数据初始化,内存管理,销毁等
import pycuda.driver as cuda #GPU CPU之间的数据传输
# 创建logger:日志记录器
logger = trt.Logger(trt.Logger.WARNING)
# 创建runtime并反序列化生成engine
with open("lenet.engine", "rb") as f, trt.Runtime(logger) as runtime:
engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()
# 分配CPU锁页内存和GPU显存
h_input = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(0)), dtype=np.float32)
h_output = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(1)), dtype=np.float32)
d_input = cuda.mem_alloc(h_input.nbytes)
d_output = cuda.mem_alloc(h_output.nbytes)
# 创建cuda流
stream = cuda.Stream()
#加载图片
img0 = cv2.imread("2.png", 0)
img1 = cv2.imread("10.png", 0)
blob0 = cv2.dnn.blobFromImage(img0, 1/255., size=(28,28), swapRB=True, crop=False)
blob1 = cv2.dnn.blobFromImage(img1, 1/255., size=(28,28), swapRB=True, crop=False)
np.copyto(h_input, np.concatenate((blob0, blob1), axis=0).ravel())
# 创建context并进行推理
with engine.create_execution_context() as context:
# Transfer input data to the GPU.
cuda.memcpy_htod_async(d_input, h_input, stream)
# Run inference.
context.execute_async_v2(bindings=[int(d_input), int(d_output)], stream_handle=stream.handle)
# Transfer predictions back from the GPU.
cuda.memcpy_dtoh_async(h_output, d_output, stream)
# Synchronize the stream
stream.synchronize()
# Return the host output. 该数据等同于原始模型的输出数据
pred = np.argmax(h_output.reshape(2, 10), axis=1)
print(pred)
C++推理:
// tensorRT include
#include <NvInfer.h>
#include <NvInferRuntime.h>
#include <NvOnnxParser.h> // onnx解析器的头文件
// cuda include
#include <cuda_runtime.h>
#include <opencv2/opencv.hpp>
// system include
#include <stdio.h>
#include <fstream>
inline const char* severity_string(nvinfer1::ILogger::Severity t)
{
switch (t)
{
case nvinfer1::ILogger::Severity::kINTERNAL_ERROR: return "internal_error";
case nvinfer1::ILogger::Severity::kERROR: return "error";
case nvinfer1::ILogger::Severity::kWARNING: return "warning";
case nvinfer1::ILogger::Severity::kINFO: return "info";
case nvinfer1::ILogger::Severity::kVERBOSE: return "verbose";
default: return "unknow";
}
}
class TRTLogger : public nvinfer1::ILogger
{
public:
virtual void log(Severity severity, nvinfer1::AsciiChar const* msg) noexcept override
{
if (severity <= Severity::kINFO)
{
if (severity == Severity::kWARNING)
printf("\033[33m%s: %s\033[0m\n", severity_string(severity), msg);
else if (severity <= Severity::kERROR)
printf("\033[31m%s: %s\033[0m\n", severity_string(severity), msg);
else
printf("%s: %s\n", severity_string(severity), msg);
}
}
} logger;
std::vector<unsigned char> load_file(const std::string & file)
{
std::ifstream in(file, std::ios::in | std::ios::binary);
if (!in.is_open())
return {};
in.seekg(0, std::ios::end);
size_t length = in.tellg();
std::vector<uint8_t> data;
if (length > 0)
{
in.seekg(0, std::ios::beg);
data.resize(length);
in.read((char*)& data[0], length);
}
in.close();
return data;
}
void inference()
{
// ------------------------------ 1. 准备模型并加载 ----------------------------
TRTLogger logger;
auto engine_data = load_file("lenet.engine");
// 执行推理前,需要创建一个推理的runtime接口实例。与builer一样,runtime需要logger:
nvinfer1::IRuntime* runtime = nvinfer1::createInferRuntime(logger);
// 将模型从读取到engine_data中,则可以对其进行反序列化以获得engine
nvinfer1::ICudaEngine* engine = runtime->deserializeCudaEngine(engine_data.data(), engine_data.size());
if (engine == nullptr)
{
printf("Deserialize cuda engine failed.\n");
runtime->destroy();
return;
}
nvinfer1::IExecutionContext* execution_context = engine->createExecutionContext();
cudaStream_t stream = nullptr;
// 创建CUDA流,以确定这个batch的推理是独立的
cudaStreamCreate(&stream);
// ------------------------------ 2. 准备好要推理的数据并搬运到GPU ----------------------------
int input_numel = 2 * 1 * 28 * 28;
float* input_data_host = nullptr;
cudaMallocHost(&input_data_host, input_numel * sizeof(float));
cv::Mat image0 = cv::imread("2.png", 0);
image0.convertTo(image0, CV_32FC1, 1.0f / 255.0f);
float* pimage = (float*)image0.data;
for (int i = 0; i < 28 * 28; i++)
{
input_data_host[i] = pimage[i];
}
cv::Mat image1 = cv::imread("10.png", 0);
image1.convertTo(image1, CV_32FC1, 1.0f / 255.0f);
pimage = (float*)image1.data;
for (int i = 0; i < 28 * 28; i++)
{
input_data_host[28 * 28 + i] = pimage[i];
}
float* input_data_device = nullptr;
float output_data_host[20];
float* output_data_device = nullptr;
cudaMalloc(&input_data_device, input_numel * sizeof(float));
cudaMalloc(&output_data_device, sizeof(output_data_host));
cudaMemcpyAsync(input_data_device, input_data_host, input_numel * sizeof(float), cudaMemcpyHostToDevice, stream);
// 用一个指针数组指定input和output在gpu中的指针
float* bindings[] = { input_data_device, output_data_device };
// ------------------------------ 3. 推理并将结果搬运回CPU ----------------------------
bool success = execution_context->enqueueV2((void**)bindings, stream, nullptr);
cudaMemcpyAsync(output_data_host, output_data_device, sizeof(output_data_host), cudaMemcpyDeviceToHost, stream);
cudaStreamSynchronize(stream);
int predict_label0 = std::max_element(output_data_host, output_data_host + 10) - output_data_host;
int predict_label1 = std::max_element(output_data_host + 10, output_data_host + 20) - output_data_host - 10;
std::cout << predict_label0 << std::endl;
std::cout << predict_label1 << std::endl;
// ------------------------------ 4. 释放内存 ----------------------------
cudaStreamDestroy(stream);
execution_context->destroy();
engine->destroy();
runtime->destroy();
}
int main()
{
inference();
return 0;
}
文章来源:https://blog.csdn.net/taifyang/article/details/134623380
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!