利用python进行数据分析 第八章 8.3 重塑和轴向旋转

2023-12-14 04:56:15

8.3 重塑和轴向旋转

有许多用于重新排列表格型数据的基础运算。这些函数也称作重塑(reshape)或轴向旋转
(pivot)运算。
重塑层次化索引
层次化索引为DataFrame数据的重排任务? 供了一种具有良好一致性的方式。主要功能有二:
stack:将数据的列“旋转”为行。
unstack:将数据的行“旋转”为列。
我将通过一系列的范例来讲解这些操作。接下来看一个简单的DataFrame,其中的行列索引均为字
符串数组:
In [120]: data = pd.DataFrame(np.arange(6).reshape((2, 3)),
.....: index=pd.Index(['Ohio','Colorado'], name='state'),
.....: columns=pd.Index(['one', 'two', 'three'],
.....: name='number'))
In [121]: data
Out[121]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

对该数据使用stack方法即可将列转换为行,得到一个Series:
In [122]: result = data.stack()
In [123]: result
Out[123]:
state number
Ohio one 0
two 1
three 2
Colorado one 3
two 4
three 5
dtype: int64

对于一个层次化索引的Series,你可以用unstack将其重排为一个DataFrame:
In [124]: result.unstack()
Out[124]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

默认情况下,unstack操作的是最内层(stack也是如此)。传入分层级别的编号或名称即可对其它
级别进行unstack操作:
In [125]: result.unstack(0)
Out[125]:
state Ohio Colorado
number
one 0 3
two 1 4
three 2 5
In [126]: result.unstack('state')
Out[126]:
state Ohio Colorado
number
one 0 3
two 1 4
three 2 5

如果不是所有的级别值都能在各分组中找到的话,则unstack操作可能会引入缺失数据:
In [127]: s1 = pd.Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])
In [128]: s2 = pd.Series([4, 5, 6], index=['c', 'd', 'e'])
In [129]: data2 = pd.concat([s1, s2], keys=['one', 'two'])
In [130]: data2
Out[130]:
one a 0
b 1
c 2
d 3
two c 4
d 5
e 6
dtype: int64
In [131]: data2.unstack()
Out[131]:
a b c d e
one 0.0 1.0 2.0 3.0 NaN
two NaN NaN 4.0 5.0 6.0

stack默认会滤除缺失数据,因此该运算是可逆的:
In [ 132 ]: data2.unstack()
Out[132]:
a b c d e
one 0.0 1.0 2.0 3.0 NaN
two NaN NaN 4.0 5.0 6.0
In [133]: data2.unstack().stack()
Out[133]:
one a 0.0
b 1.0
c 2.0
d 3.0
two c 4.0
d 5.0
e 6.0
dtype: float64
In [134]: data2.unstack().stack(dropna=False)
Out[134]:
one a 0.0
b 1.0
c 2.0
d 3.0
e NaN
two a NaN
b NaN
c 4.0
d 5.0
e 6.0
dtype: float64

在对DataFrame进行unstack操作时,作为旋转轴的级别将会成为结果中的最低级别:
In [135]: df = pd.DataFrame({'left': result, 'right': result + 5},
.....: columns=pd.Index(['left', 'right'], name='side'))
In [136]: df
Out[136]:
side left right
state number
Ohio one 0 5
two 1 6
three 2 7
Colorado one 3 8
two 4 9
three 5 10
In [137]: df.unstack('state')
Out[137]:
side left right
state Ohio Colorado Ohio Colorado
number
one 0 3 5 8
two 1 4 6 9
three 2 5 7 10

当调用stack,我们可以指明轴的名字:
In [138]: df.unstack('state').stack('side')
Out[138]:
state Colorado Ohio
number side
one left 3 0
right 8 5
two left 4 1
right 9 6
three left 5 2
right 10 7

长格式旋转为宽格式

多个时间序列数据通常是以所谓的“长格式”(long)或“堆叠格式”(stacked)存储在数据库和CSV
中的。我们先加载一些示例数据,做一些时间序列规整和数据清洗:
In [139]: data = pd.read_csv('examples/macrodata.csv')
In [140]: data.head()
Out[140]:
year quarter realgdp realcons realinv realgovt realdpi cpi \
0 1959.0 1.0 2710.349 1707.4 286.898 470.045 1886.9 28.98
1 1959.0 2.0 2778.801 1733.7 310.859 481.301 1919.7 29.15
2 1959.0 3.0 2775.488 1751.8 289.226 491.260 1916.4 29.35
3 1959.0 4.0 2785.204 1753.7 299.356 484.052 1931.3 29.37
4 1960.0 1.0 2847.699 1770.5 331.722 462.199 1955.5 29.54
m1 tbilrate unemp pop infl realint
0 139.7 2.82 5.8 177.146 0.00 0.00
1 141.7 3.08 5.1 177.830 2.34 0.74
2 140.5 3.82 5.3 178.657 2.74 1.09
3 140.0 4.33 5.6 179.386 0.27 4.06
4 139.6 3.50 5.2 180.007 2.31 1.19
In [141]: periods = pd.PeriodIndex(year=data.year, quarter=data.quarter,
.....: name='date')
In [142]: columns = pd.Index(['realgdp', 'infl', 'unemp'], name='item')
In [143]: data = data.reindex(columns=columns)
In [144]: data.index = periods.to_timestamp('D', 'end')
In [145]: ldata = data.stack().reset_index().rename(columns={0: 'value'})

这就是多个时间序列(或者其它带有两个或多个键的可观察数据,这里,我们的键是date和item)
的长格式。表中的每行代表一次观察。
关系型数据库(如MySQL)中的数据经常都是这样存储的,因为固定架构(即列名和数据类型)
有一个好处:随着表中数据的添加,item列中的值的种类能够增加。在前面的例子中,date和item
通常就是主键(用关系型数据库的说法),不仅? 供了关系完整性,而且? 供了更为简单的查询支
持。有的情况下,使用这样的数据会很麻烦,你可能会更喜欢DataFrame,不同的item值分别形成
一列,date列中的时间戳则用作索引。DataFrame的pivot方法完全可以实现这个转换:
In [147]: pivoted = ldata.pivot('date', 'item', 'value')
In [148]: pivoted
Out[148]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1
1959-09-30 2.74 2775.488 5.3
1959-12-31 0.27 2785.204 5.6
1960-03-31 2.31 2847.699 5.2
1960-06-30 0.14 2834.390 5.2
1960-09-30 2.70 2839.022 5.6
1960-12-31 1.21 2802.616 6.3
1961-03-31 -0.40 2819.264 6.8
1961-06-30 1.47 2872.005 7.0
... ... ... ...
2007-06-30 2.75 13203.977 4.5
2007-09-30 3.45 13321.109 4.7
2007-12-31 6.38 13391.249 4.8
2008-03-31 2.82 13366.865 4.9
2008-06-30 8.53 13415.266 5.4
2008-09-30 -3.16 13324.600 6.0
2008-12-31 -8.79 13141.920 6.9
2009-03-31 0.94 12925.410 8.1
2009-06-30 3.37 12901.504 9.2
2009-09-30 3.56 12990.341 9.6
[203 rows x 3 columns]

前两个传递的值分别用作行和列索引,最后一个可选值则是用于填充DataFrame的数据列。假设有
两个需要同时重塑的数据列:
In [149]: ldata['value2'] = np.random.randn(len(ldata))
In [150]: ldata[:10]
Out[150]:
date item value value2
0 1959-03-31 realgdp 2710.349 0.523772
1 1959-03-31 infl 0.000 0.000940
2 1959-03-31 unemp 5.800 1.343810
3 1959-06-30 realgdp 2778.801 -0.713544
4 1959-06-30 infl 2.340 -0.831154
5 1959-06-30 unemp 5.100 -2.370232
6 1959-09-30 realgdp 2775.488 -1.860761
7 1959-09-30 infl 2.740 -0.860757
8 1959-09-30 unemp 5.300 0.560145
9 1959-12-31 realgdp 2785.204 -1.265934

如果忽略最后一个参数,得到的DataFrame就会带有层次化的列:
In [151]: pivoted = ldata.pivot('date', 'item')
In [152]: pivoted[:5]
Out[152]:
value value2
item infl realgdp unemp infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8 0.000940 0.523772 1.343810
1959-06-30 2.34 2778.801 5.1 -0.831154 -0.713544 -2.370232
1959-09-30 2.74 2775.488 5.3 -0.860757 -1.860761 0.560145
1959-12-31 0.27 2785.204 5.6 0.119827 -1.265934 -1.063512
1960-03-31 2.31 2847.699 5.2 -2.359419 0.332883 -0.199543
In [153]: pivoted['value'][:5]
Out[153]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1
1959-09-30 2.74 2775.488 5.3
1959-12-31 0.27 2785.204 5.6
1960-03-31 2.31 2847.699 5.2

注意,pivot其实就是用set_index创建层次化索引,再用unstack重塑:
In [154]: unstacked = ldata.set_index(['date', 'item']).unstack('item')
In [155]: unstacked[:7]
Out[155]:
value value2
item infl realgdp unemp infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8 0.000940 0.523772 1.343810
1959-06-30 2.34 2778.801 5.1 -0.831154 -0.713544 -2.370232
1959-09-30 2.74 2775.488 5.3 -0.860757 -1.860761 0.560145
1959-12-31 0.27 2785.204 5.6 0.119827 -1.265934 -1.063512
1960-03-31 2.31 2847.699 5.2 -2.359419 0.332883 -0.199543
1960-06-30 0.14 2834.390 5.2 -0.970736 -1.541996 -1.307030
1960-09-30 2.70 2839.022 5.6 0.377984 0.286350 -0.753887

宽格式旋转为长格式

旋转DataFrame的逆运算是pandas.melt。它不是将一列转换到多个新的DataFrame,而是合并多
个列成为一个,产生一个比输入长的DataFrame。看一个例子:
In [157]: df = pd.DataFrame({'key': ['foo', 'bar', 'baz'],
.....: 'A': [1, 2, 3],
.....: 'B': [4, 5, 6],
.....: 'C': [7, 8, 9]})
In [158]: df
Out[158]:
A B C key
0 1 4 7 foo
1 2 5 8 bar
2 3 6 9 baz

key列可能是分组指标,其它的列是数据值。当使用pandas.melt,我们必须指明哪些列是分组指
标。下面使用key作为唯一的分组指标:
In [159]: melted = pd.melt(df, ['key'])
In [160]: melted
Out[160]:
key variable value
0 foo A 1
1 bar A 2
2 baz A 3
3 foo B 4
4 bar B 5
5 baz B 6
6 foo C 7
7 bar C 8
8 baz C 9

使用pivot,可以重塑回原来的样子:
In [161]: reshaped = melted.pivot('key', 'variable', 'value')
In [162]: reshaped
Out[162]:
variable A B C
key
bar 2 5 8
baz 3 6 9
foo 1 4 7

因为pivot的结果从列创建了一个索引,用作行标签,我们可以使用reset_index将数据移回列:
In [163]: reshaped.reset_index()
Out[163]:
variable key A B C
0 bar 2 5 8
1 baz 3 6 9
2 foo 1 4 7

你还可以指定列的子集,作为值的列:
In [164]: pd.melt(df, id_vars=['key'], value_vars=['A', 'B'])
Out[164]:
key variable value
0 foo A 1
1 bar A 2
2 baz A 3
3 foo B 4
4 bar B 5
5 baz B 6

pandas.melt也可以不用分组指标:
In [165]: pd.melt(df, value_vars=['A', 'B', 'C'])
Out[165]:
variable value
0 A 1
1 A 2
2 A 3
3 B 4
4 B 5
5 B 6
6 C 7
7 C 8
8 C 9
In [166]: pd.melt(df, value_vars=['key', 'A', 'B'])
Out[166]:
variable value
0 key foo
1 key bar
2 key baz
3 A 1
4 A 2
5 A 3
6 B 4
7 B 5
8 B 6

文章来源:https://blog.csdn.net/weixin_44971889/article/details/134911503
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。