【深度学习】序列生成模型(五):评价方法计算实例:计算BLEU-N得分
??给定一个生成序列“The cat sat on the mat”和两个参考序列“The cat is on the mat”“The bird sat on the bush”分别计算BLEU-N和ROUGE-N得分(N=1或N =2时).
- 生成序列 x = the?cat?sat?on?the?mat \mathbf{x}=\text{the cat sat on the mat} x=the?cat?sat?on?the?mat
- 参考序列
- s ( 1 ) = the?cat?is?on?the?mat \mathbf{s}^{(1)}=\text{the cat is on the mat} s(1)=the?cat?is?on?the?mat
- s ( 2 ) = the?bird?sat?on?the?bush \mathbf{s}^{(2)}=\text{the bird sat on the bush} s(2)=the?bird?sat?on?the?bush
一、BLEU-N得分(Bilingual Evaluation Understudy)
1. 定义
??设 𝒙 为模型生成的候选序列, s ( 1 ) , ? , s ( K ) \mathbf{s^{(1)}}, ? , \mathbf{s^{(K)}} s(1),?,s(K) 为一组参考序列,𝒲 为从生成的候选序列中提取所有N元组合的集合。BLEU算法的精度(Precision)定义如下:
P N ( x ) = ∑ w ∈ W min ? ( c w ( x ) , max ? k = 1 K c w ( s ( k ) ) ) ∑ w ∈ W c w ( x ) P_N(\mathbf{x}) = \frac{\sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))}{\sum_{w \in \mathcal{W}} c_w(\mathbf{x})} PN?(x)=∑w∈W?cw?(x)∑w∈W?min(cw?(x),maxk=1K?cw?(s(k)))?
其中 c w ( x ) c_w(\mathbf{x}) cw?(x) 是N元组合 w w w 在生成序列 x \mathbf{x} x中出现的次数, c w ( s ( k ) ) c_w(\mathbf{s}^{(k)}) cw?(s(k)) 是N元组合 w w w 在参考序列 s ( k ) \mathbf{s}^{(k)} s(k) 中出现的次数。
??为了处理生成序列长度短于参考序列的情况,引入长度惩罚因子 b ( x ) b(\mathbf{x}) b(x):
b ( x ) = { 1 if? l x > l s exp ? ( 1 ? l s l x ) if? l x ≤ l s b(\mathbf{x}) = \begin{cases} 1 & \text{if } l_x > l_s \\ \exp\left(1 - \frac{l_s}{l_x}\right) & \text{if } l_x \leq l_s \end{cases} b(x)={1exp(1?lx?ls??)?if?lx?>ls?if?lx?≤ls??
其中 l x l_x lx? 是生成序列的长度, l s l_s ls? 是参考序列的最短长度。
??BLEU算法通过计算不同长度的N元组合的精度,并进行几何加权平均,得到最终的BLEU分数:
BLEU-N ( x ) = b ( x ) × exp ? ( ∑ N = 1 N ′ α N log ? P N ( x ) ) \text{BLEU-N}(\mathbf{x}) = b(\mathbf{x}) \times \exp\left( \sum_{N=1}^{N'} \alpha_N \log P_N(\mathbf{x})\right) BLEU-N(x)=b(x)×exp ?N=1∑N′?αN?logPN?(x) ?
其中 N ′ N' N′ 为最长N元组合的长度, α N \alpha_N αN? 是不同N元组合的权重,一般设为 1 / N ′ 1/N' 1/N′。
2. 计算
N=1
- 生成序列 x = the?cat?sat?on?the?mat \mathbf{x}=\text{the cat sat on the mat} x=the?cat?sat?on?the?mat
- 参考序列
- s ( 1 ) = the?cat?is?on?the?mat \mathbf{s}^{(1)}=\text{the cat is on the mat} s(1)=the?cat?is?on?the?mat
- s ( 2 ) = the?bird?sat?on?the?bush \mathbf{s}^{(2)}=\text{the bird sat on the bush} s(2)=the?bird?sat?on?the?bush
-
W
=
?the,?cat,?sat,?on,?mat
\mathcal{W}=\text{ {the, cat, sat, on, mat}}
W=?the,?cat,?sat,?on,?mat
-
w
=
the
w=\text{the}
w=the
- c w ( x ) = 2 , c w ( s ( 1 ) ) = 2 , c w ( s ( 2 ) ) = 2 c_w(\mathbf{x})=2, c_w(\mathbf{s^{(1)}})=2,c_w(\mathbf{s^{(2)}})=2 cw?(x)=2,cw?(s(1))=2,cw?(s(2))=2
- max ? k = 1 K c w ( s ( k ) ) ) = 2 \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))=2 maxk=1K?cw?(s(k)))=2
- min ? ( c w ( x ) , max ? k = 1 K c w ( s ( k ) ) ) = 2 \min(c_w(\mathbf{x}), \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))=2 min(cw?(x),maxk=1K?cw?(s(k)))=2
-
w
=
cat
w=\text{cat}
w=cat
- c w ( x ) = 1 , c w ( s ( 1 ) ) = 1 , c w ( s ( 2 ) ) = 0 c_w(\mathbf{x})=1, c_w(\mathbf{s^{(1)}})=1,c_w(\mathbf{s^{(2)}})=0 cw?(x)=1,cw?(s(1))=1,cw?(s(2))=0
- max ? k = 1 K c w ( s ( k ) ) ) = 1 \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))=1 maxk=1K?cw?(s(k)))=1
- min ? ( c w ( x ) , max ? k = 1 K c w ( s ( k ) ) ) = 1 \min(c_w(\mathbf{x}), \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))=1 min(cw?(x),maxk=1K?cw?(s(k)))=1
-
w
=
sat
w=\text{sat}
w=sat
- c w ( x ) = 1 , c w ( s ( 1 ) ) = 0 , c w ( s ( 2 ) ) = 1 c_w(\mathbf{x})=1, c_w(\mathbf{s^{(1)}})=0, c_w(\mathbf{s^{(2)}})=1 cw?(x)=1,cw?(s(1))=0,cw?(s(2))=1
- max ? k = 1 K c w ( s ( k ) ) ) = 1 \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))=1 maxk=1K?cw?(s(k)))=1
- min ? ( c w ( x ) , max ? k = 1 K c w ( s ( k ) ) ) = 1 \min(c_w(\mathbf{x}), \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))=1 min(cw?(x),maxk=1K?cw?(s(k)))=1
-
w
=
on
w=\text{on}
w=on
- c w ( x ) = 1 , c w ( s ( 1 ) ) = 1 , c w ( s ( 2 ) ) = 1 c_w(\mathbf{x})=1, c_w(\mathbf{s^{(1)}})=1,c_w(\mathbf{s^{(2)}})=1 cw?(x)=1,cw?(s(1))=1,cw?(s(2))=1
- max ? k = 1 K c w ( s ( k ) ) ) = 1 \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))=1 maxk=1K?cw?(s(k)))=1
- min ? ( c w ( x ) , max ? k = 1 K c w ( s ( k ) ) ) = 1 \min(c_w(\mathbf{x}), \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))=1 min(cw?(x),maxk=1K?cw?(s(k)))=1
-
w
=
mat
w=\text{mat}
w=mat
- c w ( x ) = 1 , c w ( s ( 1 ) ) = 1 , c w ( s ( 2 ) ) = 0 c_w(\mathbf{x})=1, c_w(\mathbf{s^{(1)}})=1,c_w(\mathbf{s^{(2)}})=0 cw?(x)=1,cw?(s(1))=1,cw?(s(2))=0
- max ? k = 1 K c w ( s ( k ) ) ) = 1 \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))=1 maxk=1K?cw?(s(k)))=1
- min ? ( c w ( x ) , max ? k = 1 K c w ( s ( k ) ) ) = 1 \min(c_w(\mathbf{x}), \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))=1 min(cw?(x),maxk=1K?cw?(s(k)))=1
-
w
=
the
w=\text{the}
w=the
- ∑ w ∈ W min ? ( c w ( x ) , max ? k = 1 K c w ( s ( k ) ) ) = 2 + 1 + 1 + 1 + 1 + 1 = 6 \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))=2+1+1+1+1+1=6 ∑w∈W?min(cw?(x),maxk=1K?cw?(s(k)))=2+1+1+1+1+1=6
- ∑ w ∈ W c w ( x ) = 1 + 1 + 1 + 1 + 1 + 1 = 6 \sum_{w \in \mathcal{W}} c_w(\mathbf{x})=1+1+1+1+1+1=6 ∑w∈W?cw?(x)=1+1+1+1+1+1=6
- P 1 ( x ) = ∑ w ∈ W min ? ( c w ( x ) , max ? k = 1 K c w ( s ( k ) ) ) ∑ w ∈ W c w ( x ) = 6 6 = 1 P_1(\mathbf{x}) = \frac{\sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))}{\sum_{w \in \mathcal{W}} c_w(\mathbf{x})}= \frac{6}{6}=1 P1?(x)=∑w∈W?cw?(x)∑w∈W?min(cw?(x),maxk=1K?cw?(s(k)))?=66?=1
N=2
- 生成序列 x = the?cat?sat?on?the?mat \mathbf{x}=\text{the cat sat on the mat} x=the?cat?sat?on?the?mat
- 参考序列
- s ( 1 ) = the?cat?is?on?the?mat \mathbf{s}^{(1)}=\text{the cat is on the mat} s(1)=the?cat?is?on?the?mat
- s ( 2 ) = the?bird?sat?on?the?bush \mathbf{s}^{(2)}=\text{the bird sat on the bush} s(2)=the?bird?sat?on?the?bush
- W = the?cat,?cat?sat,?sat?on,?on?the,?the?mat? \mathcal{W}=\text{{the cat, cat sat, sat on, on the, the mat} } W=the?cat,?cat?sat,?sat?on,?on?the,?the?mat?
w w w | c w ( x ) c_w(\mathbf{x}) cw?(x) | c w ( s ( 1 ) ) c_w(\mathbf{s^{(1)}}) cw?(s(1)) | c w ( s ( 2 ) ) c_w(\mathbf{s^{(2)}}) cw?(s(2)) | max ? k = 1 K c w ( s ( k ) ) ) \max_{k=1}^{K} c_w(\mathbf{s}^{(k)})) maxk=1K?cw?(s(k))) | min ? ( c w ( x ) , max ? k = 1 K c w ( s ( k ) ) ) \min(c_w(\mathbf{x}), \max_{k=1}^{K} c_w(\mathbf{s}^{(k)})) min(cw?(x),maxk=1K?cw?(s(k))) |
---|---|---|---|---|---|
the cat | 1 | 1 | 0 | 1 | 1 |
cat sat | 1 | 0 | 0 | 0 | 0 |
sat on | 1 | 0 | 1 | 1 | 1 |
on the | 1 | 1 | 1 | 1 | 1 |
the mat | 1 | 1 | 0 | 1 | 1 |
- ∑ w ∈ W min ? ( c w ( x ) , max ? k = 1 K c w ( s ( k ) ) ) = 1 + 0 + 1 + 1 + 1 = 4 \sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))=1+0+1+1+1=4 ∑w∈W?min(cw?(x),maxk=1K?cw?(s(k)))=1+0+1+1+1=4
- ∑ w ∈ W c w ( x ) = 1 + 1 + 1 + 1 + 1 = 5 \sum_{w \in \mathcal{W}} c_w(\mathbf{x})=1+1+1+1+1=5 ∑w∈W?cw?(x)=1+1+1+1+1=5
- P 2 ( x ) = ∑ w ∈ W min ? ( c w ( x ) , max ? k = 1 K c w ( s ( k ) ) ) ∑ w ∈ W c w ( x ) = 4 5 P_2(\mathbf{x}) = \frac{\sum_{w \in \mathcal{W}} \min(c_w(\mathbf{x}), \max_{k=1}^{K} c_w(\mathbf{s}^{(k)}))}{\sum_{w \in \mathcal{W}} c_w(\mathbf{x})}= \frac{4}{5} P2?(x)=∑w∈W?cw?(x)∑w∈W?min(cw?(x),maxk=1K?cw?(s(k)))?=54?
BLEU-N 得分
??为了处理生成序列长度短于参考序列的情况,引入长度惩罚因子 b ( x ) b(\mathbf{x}) b(x): b ( x ) = { 1 if? l x > l s exp ? ( 1 ? l s l x ) if? l x ≤ l s b(\mathbf{x}) = \begin{cases} 1 & \text{if } l_x > l_s \\ \exp\left(1 - \frac{l_s}{l_x}\right) & \text{if } l_x \leq l_s \end{cases} b(x)={1exp(1?lx?ls??)?if?lx?>ls?if?lx?≤ls??其中 l x l_x lx? 是生成序列的长度, l s l_s ls? 是参考序列的最短长度。
??这里 l x = l s ( 1 ) = l s ( 2 ) = 6 l_x=l_{s^{(1)}}=l_{s^{(2)}}=6 lx?=ls(1)?=ls(2)?=6,因此 b ( x ) = e ( 1 ? l s l x ) = e 0 = 1 b(\mathbf{x}) =e^{\left( 1 - \frac{l_s}{l_x} \right)}=e^0=1 b(x)=e(1?lx?ls??)=e0=1
??BLEU算法通过计算不同长度的N元组合的精度,并进行几何加权平均,得到最终的BLEU分数:
BLEU-N
(
x
)
=
b
(
x
)
×
exp
?
(
1
N
′
∑
N
=
1
N
′
α
N
log
?
P
N
(
x
)
)
\text{BLEU-N}(\mathbf{x}) = b(\mathbf{x}) \times \exp\left(\frac{1}{N'} \sum_{N=1}^{N'} \alpha_N \log P_N(\mathbf{x})\right)
BLEU-N(x)=b(x)×exp
?N′1?N=1∑N′?αN?logPN?(x)
?其中
N
′
N'
N′ 为最长N元组合的长度,
α
N
\alpha_N
αN? 是不同N元组合的权重,一般设为
1
/
N
′
1/N'
1/N′。
BLEU-N
(
x
)
=
1
×
exp
?
(
∑
N
=
1
2
1
2
log
?
P
N
(
x
)
)
=
exp
?
(
1
2
log
?
P
1
(
x
)
+
1
2
log
?
P
2
(
x
)
)
=
exp
?
(
1
2
log
?
1
+
1
2
log
?
4
5
)
=
exp
?
(
0
+
log
?
4
5
)
=
4
5
\text{BLEU-N}(\mathbf{x}) = 1 \times\exp\left( \sum_{N=1}^{2} \frac{1}{2} \log P_N(\mathbf{x})\right)\\ =\exp\left(\frac{1}{2}\log P_1(\mathbf{x})+\frac{1}{2}\log P_2(\mathbf{x)}\right)\\ =\exp\left(\frac{1}{2}\log 1+\frac{1}{2}\log \frac{4}{5}\right)\\ =\exp\left(0+\log \sqrt\frac{4}{5}\right)\\ =\sqrt\frac{4}{5}
BLEU-N(x)=1×exp(N=1∑2?21?logPN?(x))=exp(21?logP1?(x)+21?logP2?(x))=exp(21?log1+21?log54?)=exp(0+log54??)=54??
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!