PiflowX组件-ReadFromKafka
2023-12-29 21:35:01
ReadFromKafka组件
组件说明
从kafka中读取数据。
计算引擎
flink
有界性
Unbounded
组件分组
kafka
端口
Inport:默认端口
outport:默认端口
组件属性
名称 | 展示名称 | 默认值 | 允许值 | 是否必填 | 描述 | 例子 |
---|---|---|---|---|---|---|
kafka_host | KAFKA_HOST | “” | 无 | 是 | 逗号分隔的Kafka broker列表。 | 127.0.0.1:9092 |
topic | TOPIC | “” | 无 | 否 | 读取数据的topic名。亦支持用分号间隔的topic列表,如 ‘topic-1;topic-2’。" "注意,‘topic’ 和 ‘topic-pattern’ 两个选项只能使用其中一个。 | topic-1 |
topic_pattern | TOPIC_PATTERN | “” | 无 | 否 | 匹配读取topic名称的正则表达式。在作业开始运行时,所有匹配该正则表达式的topic都将被Kafka consumer订阅。注意,‘topic’ 和 ‘topic-pattern’ 两个选项只能使用其中一个。 | topic1_* |
startup_mode | STARTUP_MODE | “” | Set(“earliest-offset”, “latest-offset”, “group-offsets”, “timestamp”, “specific-offsets”) | 否 | Kafka consumer 的启动模式。 | earliest-offset |
schema | SCHEMA | “” | 无 | 否 | Kafka消息的schema信息。 | id:int,name:string,age:int |
format | FORMAT | “” | Set(“json”, “csv”, “avro”, “parquet”, “orc”, “raw”, “protobuf”,“debezium-json”, “canal-json”, “maxwell-json”, “ogg-json”) | 是 | 用来反序列化Kafka消息的格式。注意:该配置项和 ‘value.format’ 二者必需其一。 | json |
group | GROUP | “” | 无 | 否 | Kafka source的消费组id。如果未指定消费组ID,则会使用自动生成的"KafkaSource-{tableIdentifier}"作为消费组ID。 | group_1 |
properties | PROPERTIES | “” | 无 | 否 | Kafka source连接器其他配置 |
ReadFromKafka示例配置
{
"flow": {
"name": "DataGenTest",
"uuid": "1234",
"stops": [
{
"uuid": "0000",
"name": "DataGen1",
"bundle": "cn.piflow.bundle.flink.common.DataGen",
"properties": {
"schema": "[{\"filedName\":\"id\",\"filedType\":\"INT\",\"kind\":\"sequence\",\"start\":1,\"end\":10000},{\"filedName\":\"name\",\"filedType\":\"STRING\",\"kind\":\"random\",\"length\":15},{\"filedName\":\"age\",\"filedType\":\"INT\",\"kind\":\"random\",\"max\":100,\"min\":1}]",
"count": "100",
"ratio": "5"
}
},
{
"uuid": "1111",
"name": "WriteToKafka1",
"bundle": "cn.piflow.bundle.flink.kafka.WriteToKafka",
"properties": {
"kafka_host": "hadoop01:9092",
"topic": "test",
"schema": "",
"format": "json",
"properties": "{}"
}
},
{
"uuid": "2222",
"name": "ReadFromKafka1",
"bundle": "cn.piflow.bundle.flink.kafka.ReadFromKafka",
"properties": {
"kafka_host": "hadoop01:9092",
"topic": "test",
"group": "test",
"startup_mode": "earliest-offset",
"schema": "id:int,name:string,age:int",
"format": "json",
"properties": "{}"
}
},
{
"uuid": "3333",
"name": "ShowData1",
"bundle": "cn.piflow.bundle.flink.common.ShowData",
"properties": {
"showNumber": "5000"
}
}
],
"paths": [
{
"from": "DataGen1",
"outport": "",
"inport": "",
"to": "WriteToKafka1"
},
{
"from": "WriteToKafka1",
"outport": "",
"inport": "",
"to": "ReadFromKafka1"
},
{
"from": "ReadFromKafka1",
"outport": "",
"inport": "",
"to": "ShowData1"
}
]
}
}
示例说明
本示例演示了通过DataGen
组件生成id,name,age3个字段100条数据,每秒生成5条数据,通过WriteToKafka
组件将数据写入到kafka的test topic中,然后通过ReadFromKafka组件从test topic中读取数据,最后使用ShowData
组件将数据打印在控制台。
字段描述
[
{
"filedName": "id",
"filedType": "INT",
"kind": "sequence",
"start": 1,
"end": 10000
},
{
"filedName": "name",
"filedType": "STRING",
"kind": "random",
"length": 15
},
{
"filedName": "age",
"filedType": "INT",
"kind": "random",
"max": 100,
"min": 1
}
]
1.id字段
id字段类型为INT,使用sequence生成器,序列生成器的起始值为1,结束值为10000.
2.name字段
name字段类型为STRING,使用random生成器,生成字符长度为15。
3.age字段
age字段类型为INT,使用random生成器,随机生成器的最小值为1,最大值为100。
文章来源:https://blog.csdn.net/qq_19635589/article/details/135298336
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!