【flink番外篇】9、Flink Table API 支持的操作示例(5)- 表的列操作
Flink 系列文章
一、Flink 专栏
Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。
-
1、Flink 部署系列
本部分介绍Flink的部署、配置相关基础内容。 -
2、Flink基础系列
本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 -
3、Flik Table API和SQL基础系列
本部分介绍Flink Table Api和SQL的基本用法,比如Table API和SQL创建库、表用法、查询、窗口函数、catalog等等内容。 -
4、Flik Table API和SQL提高与应用系列
本部分是table api 和sql的应用部分,和实际的生产应用联系更为密切,以及有一定开发难度的内容。 -
5、Flink 监控系列
本部分和实际的运维、监控工作相关。
二、Flink 示例专栏
Flink 示例专栏是 Flink 专栏的辅助说明,一般不会介绍知识点的信息,更多的是提供一个一个可以具体使用的示例。本专栏不再分目录,通过链接即可看出介绍的内容。
两专栏的所有文章入口点击:Flink 系列文章汇总索引
本文给出针对表字段的各种操作及验证。
如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。
本文除了maven依赖外,没有其他依赖。
本文需要有kafka的运行环境。
本文更详细的内容可参考文章:
17、Flink 之Table API: Table API 支持的操作(1)
17、Flink 之Table API: Table API 支持的操作(2)
本专题分为以下几篇文章:
【flink番外篇】9、Flink Table API 支持的操作示例(1)-通过Table API和SQL创建表
【flink番外篇】9、Flink Table API 支持的操作示例(2)- 通过Table API 和 SQL 创建视图
【flink番外篇】9、Flink Table API 支持的操作示例(3)- 通过API查询表和使用窗口函数的查询
【flink番外篇】9、Flink Table API 支持的操作示例(4)- Table API 对表的查询、过滤操作
【flink番外篇】9、Flink Table API 支持的操作示例(5)- 表的列操作
【flink番外篇】9、Flink Table API 支持的操作示例(6)- 表的聚合(group by、Distinct、GroupBy/Over Window Aggregation)操作
【flink番外篇】9、Flink Table API 支持的操作示例(7)- 表的join操作(内联接、外联接以及联接自定义函数等)
【flink番外篇】9、Flink Table API 支持的操作示例(8)- 时态表的join(scala版本)
【flink番外篇】9、Flink Table API 支持的操作示例(9)- 表的union、unionall、intersect、intersectall、minus、minusall和in的操作
【flink番外篇】9、Flink Table API 支持的操作示例(10)- 表的OrderBy、Offset 和 Fetch、insert操作
【flink番外篇】9、Flink Table API 支持的操作示例(11)- Group Windows(tumbling、sliding和session)操作
【flink番外篇】9、Flink Table API 支持的操作示例(12)- Over Windows(有界和无界的over window)操作
【flink番外篇】9、Flink Table API 支持的操作示例(13)- Row-based(map、flatmap、aggregate、group window aggregate等)操作
【flink番外篇】9、Flink Table API 支持的操作示例(14)- 时态表的join(java版本)
【flink番外篇】9、Flink Table API 支持的操作示例(1)-完整版
【flink番外篇】9、Flink Table API 支持的操作示例(2)-完整版
一、maven依赖
本文maven依赖参考文章:【flink番外篇】9、Flink Table API 支持的操作示例(1)-通过Table API和SQL创建表 中的依赖,为节省篇幅不再赘述。
二、表的列操作
针对表的字段进行操作,具体示例如下,运行结果在源文件中。
import static org.apache.flink.table.api.Expressions.$;
import static org.apache.flink.table.api.Expressions.row;
import static org.apache.flink.table.api.Expressions.and;
import static org.apache.flink.table.api.Expressions.concat;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
/**
* @author alanchan
*
*/
public class TestTableAPIOperationDemo {
static String sourceSql = "CREATE TABLE Alan_KafkaTable (\r\n"
+ " `event_time` TIMESTAMP(3) METADATA FROM 'timestamp',\r\n"
+ " `partition` BIGINT METADATA VIRTUAL,\r\n"
+ " `offset` BIGINT METADATA VIRTUAL,\r\n"
+ " `user_id` BIGINT,\r\n"
+ " `item_id` BIGINT,\r\n"
+ " `behavior` STRING\r\n"
+ ") WITH (\r\n"
+ " 'connector' = 'kafka',\r\n"
+ " 'topic' = 'user_behavior',\r\n"
+ " 'properties.bootstrap.servers' = '192.168.10.41:9092,192.168.10.42:9092,192.168.10.43:9092',\r\n"
+ " 'properties.group.id' = 'testGroup',\r\n"
+ " 'scan.startup.mode' = 'earliest-offset',\r\n"
+ " 'format' = 'csv'\r\n"
+ ");";
/**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
// test1();
// test2();
test3();
}
static void test3() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// 建表
tenv.executeSql(sourceSql);
Table table1 = tenv.from("Alan_KafkaTable");
// 重命名字段。
Table result = table1.as("a","b","c","d","e","f");
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
resultDS.print();
//11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
//和 SQL 的 WHERE 子句类似。 过滤掉未验证通过过滤谓词的行。
Table table2 = result.where($("f").isEqual("login"));
DataStream<Tuple2<Boolean, Row>> result2DS = tenv.toRetractStream(table2, Row.class);
result2DS.print();
//11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
Table table3 = result.where($("f").isNotEqual("login"));
DataStream<Tuple2<Boolean, Row>> result3DS = tenv.toRetractStream(table3, Row.class);
result3DS.print();
// 没有匹配条件的记录,无输出
Table table4 = result
.filter(
and(
$("f").isNotNull(),
// $("d").isGreater(1)
$("e").isNotNull()
)
);
DataStream<Tuple2<Boolean, Row>> result4DS = tenv.toRetractStream(table4, Row.class);
result4DS.print("test filter:");
//test filter::11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
env.execute();
}
/**
* 和 SQL 查询中的 VALUES 子句类似。 基于提供的行生成一张内联表。
*
* 你可以使用 row(...) 表达式创建复合行:
*
* @throws Exception
*/
static void test2() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
Table table = tenv.fromValues(row(1, "ABC"), row(2L, "ABCDE"));
table.printSchema();
// (
// `f0` BIGINT NOT NULL,
// `f1` VARCHAR(5) NOT NULL
// )
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(table, Row.class);
resultDS.print();
// 1> (true,+I[2, ABCDE])
// 2> (true,+I[1, ABC])
Table table2 = tenv.fromValues(
DataTypes.ROW(
DataTypes.FIELD("id", DataTypes.DECIMAL(10, 2)),
DataTypes.FIELD("name", DataTypes.STRING())
),
row(1, "ABCD"),
row(2L, "ABCDEF")
);
table2.printSchema();
// (
// `id` DECIMAL(10, 2),
// `name` STRING
// )
DataStream<Tuple2<Boolean, Row>> result2DS = tenv.toRetractStream(table2, Row.class);
result2DS.print();
// 15> (true,+I[2.00, ABCDEF])
// 14> (true,+I[1.00, ABCD])
env.execute();
}
/**
* 和 SQL 查询的 FROM 子句类似。 执行一个注册过的表的扫描。
*
* @throws Exception
*/
static void test1() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// 建表
tenv.executeSql(sourceSql);
// 查询
// tenv.from("Alan_KafkaTable").execute().print();
// kafka输入数据
// 1,1002,login
// 应用程序控制台输出如下
// +----+-------------------------+----------------------+----------------------+----------------------+----------------------+--------------------------------+
// | op | event_time | partition | offset | user_id | item_id | behavior |
// +----+-------------------------+----------------------+----------------------+----------------------+----------------------+--------------------------------+
// | +I | 2023-11-01 11:00:30.183 | 0 | 2 | 1 | 1002 | login |
Table temp = tenv.from("Alan_KafkaTable");
//和 SQL 的 SELECT 子句类似。 执行一个 select 操作
Table result1 = temp.select($("user_id"), $("item_id").as("behavior"), $("event_time"));
DataStream<Tuple2<Boolean, Row>> result1DS = tenv.toRetractStream(result1, Row.class);
// result1DS.print();
// 11> (true,+I[1, 1002, 2023-11-01T11:00:30.183])
//选择星号(*)作为通配符,select 表中的所有列。
Table result2 = temp.select($("*"));
DataStream<Tuple2<Boolean, Row>> result2DS = tenv.toRetractStream(result2, Row.class);
result2DS.print();
// 11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
env.execute();
}
static void test5() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// 建表
tenv.executeSql(sourceSql);
Table table = tenv.from("Alan_KafkaTable");
//和 SQL 的 GROUP BY 子句类似。 使用分组键对行进行分组,使用伴随的聚合算子来按照组进行聚合行。
Table result = table.groupBy($("user_id")).select($("user_id"), $("user_id").count().as("count(user_id)"));
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(result, Row.class);
resultDS.print();
// 12> (true,+I[1, 1])
env.execute();
}
static void test4() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
// 建表
tenv.executeSql(sourceSql);
Table table = tenv.from("Alan_KafkaTable");
//执行字段添加操作。 如果所添加的字段已经存在,将抛出异常。
Table result2 = table.addColumns($("behavior").plus(1).as("t_col1"));
result2.printSchema();
// (
// `event_time` TIMESTAMP(3),
// `partition` BIGINT,
// `offset` BIGINT,
// `user_id` BIGINT,
// `item_id` BIGINT,
// `behavior` STRING,
// `t_col1` STRING
// )
Table result = table.addColumns($("behavior").plus(1).as("t_col3"), concat($("behavior"), "alanchan").as("t_col4"));
result.printSchema();
// (
// `event_time` TIMESTAMP(3),
// `partition` BIGINT,
// `offset` BIGINT,
// `user_id` BIGINT,
// `item_id` BIGINT,
// `behavior` STRING,
// `t_col3` STRING,
// `t_col4` STRING
// )
Table result3 = table.addColumns(concat($("behavior"), "alanchan").as("t_col4"));
result3.printSchema();
// (
// `event_time` TIMESTAMP(3),
// `partition` BIGINT,
// `offset` BIGINT,
// `user_id` BIGINT,
// `item_id` BIGINT,
// `behavior` STRING,
// `t_col4` STRING
// )
//执行字段添加操作。 如果添加的列名称和已存在的列名称相同,则已存在的字段将被替换。 此外,如果添加的字段里面有重复的字段名,则会使用最后一个字段。
Table result4 = result3.addOrReplaceColumns(concat($("t_col4"), "alanchan").as("t_col"));
result4.printSchema();
// (
// `event_time` TIMESTAMP(3),
// `partition` BIGINT,
// `offset` BIGINT,
// `user_id` BIGINT,
// `item_id` BIGINT,
// `behavior` STRING,
// `t_col4` STRING,
// `t_col` STRING
// )
Table result5 = result4.dropColumns($("t_col4"), $("t_col"));
result5.printSchema();
// (
// `event_time` TIMESTAMP(3),
// `partition` BIGINT,
// `offset` BIGINT,
// `user_id` BIGINT,
// `item_id` BIGINT,
// `behavior` STRING
// )
//执行字段重命名操作。 字段表达式应该是别名表达式,并且仅当字段已存在时才能被重命名。
Table result6 = result4.renameColumns($("t_col4").as("col1"), $("t_col").as("col2"));
result6.printSchema();
// (
// `event_time` TIMESTAMP(3),
// `partition` BIGINT,
// `offset` BIGINT,
// `user_id` BIGINT,
// `item_id` BIGINT,
// `behavior` STRING,
// `col1` STRING,
// `col2` STRING
// )
DataStream<Tuple2<Boolean, Row>> resultDS = tenv.toRetractStream(table, Row.class);
resultDS.print();
// 11> (true,+I[2023-11-01T11:00:30.183, 0, 2, 1, 1002, login])
env.execute();
}
}
以上,本文给出针对表字段的各种操作及验证。
如果需要了解更多内容,可以在本人Flink 专栏中了解更新系统的内容。
本文更详细的内容可参考文章:
17、Flink 之Table API: Table API 支持的操作(1)
17、Flink 之Table API: Table API 支持的操作(2)
本专题分为以下几篇文章:
【flink番外篇】9、Flink Table API 支持的操作示例(1)-通过Table API和SQL创建表
【flink番外篇】9、Flink Table API 支持的操作示例(2)- 通过Table API 和 SQL 创建视图
【flink番外篇】9、Flink Table API 支持的操作示例(3)- 通过API查询表和使用窗口函数的查询
【flink番外篇】9、Flink Table API 支持的操作示例(4)- Table API 对表的查询、过滤操作
【flink番外篇】9、Flink Table API 支持的操作示例(5)- 表的列操作
【flink番外篇】9、Flink Table API 支持的操作示例(6)- 表的聚合(group by、Distinct、GroupBy/Over Window Aggregation)操作
【flink番外篇】9、Flink Table API 支持的操作示例(7)- 表的join操作(内联接、外联接以及联接自定义函数等)
【flink番外篇】9、Flink Table API 支持的操作示例(8)- 时态表的join(scala版本)
【flink番外篇】9、Flink Table API 支持的操作示例(9)- 表的union、unionall、intersect、intersectall、minus、minusall和in的操作
【flink番外篇】9、Flink Table API 支持的操作示例(10)- 表的OrderBy、Offset 和 Fetch、insert操作
【flink番外篇】9、Flink Table API 支持的操作示例(11)- Group Windows(tumbling、sliding和session)操作
【flink番外篇】9、Flink Table API 支持的操作示例(12)- Over Windows(有界和无界的over window)操作
【flink番外篇】9、Flink Table API 支持的操作示例(13)- Row-based(map、flatmap、aggregate、group window aggregate等)操作
【flink番外篇】9、Flink Table API 支持的操作示例(14)- 时态表的join(java版本)
【flink番外篇】9、Flink Table API 支持的操作示例(1)-完整版
【flink番外篇】9、Flink Table API 支持的操作示例(2)-完整版
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!