利用markdown语法,写出数学公式以及常用符号【持续更新!!!】
1.希腊字母
数学表达式 | Markdown语法 |
---|---|
α | \alpha |
β | \beta |
γ | \gamma |
δ | \delta |
ε | \epsilon |
ζ | \zeta |
η | \eta |
θ | \theta |
ι | \iota |
κ | \kappa |
λ | \lambda |
μ | \mu |
ν | \nu |
ξ | \xi |
ο | \omicron |
π | \pi |
ρ | \rho |
σ | \sigma |
τ | \tau |
υ | \upsilon |
φ | \phi |
χ | \chi |
ψ | \psi |
ω | \omega |
2.基本表达式
数学表达式 | Markdow语法 |
---|---|
x2 | x^2 |
y? | y_1 |
∞ | \infty |
-∞ | -\infty |
a + b - c * d | a+b-c*d |
a ÷ b | a\div{b} |
a ± b | a\pm{b} |
a/b | \frac{a}{b} |
√b | \sqrt{b} |
sinθ | \sin{\theta} |
cosθ | \cos{\theta} |
tanθ | \tan{\theta} |
cotθ | \cot{\theta} |
≦ | \leq |
≧ | \geq |
3.复杂表达式
(1)
\vec{F}
F
?
\vec{F}
F
(2)
\sum_{i=1}^{n}{a_i}
∑
i
=
1
n
a
i
\sum_{i=1}^{n}{a_i}
i=1∑n?ai?
(3)
\lim_{a\rightarrow+\infty}{a+b}
lim
?
a
→
+
∞
a
+
b
\lim_{a\rightarrow+\infty}{a+b}
a→+∞lim?a+b
(4)
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
1 2 3 4 5 6 7 8 9 ? \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \ 147?258?369??
(5)
\left\{
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right\}
{ 1 2 3 4 5 6 7 8 9 } \left\{ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right\} ? ? ??147?258?369?? ? ??
(6)
\left[
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right]
[ 1 2 3 4 5 6 7 8 9 ] \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right] ?147?258?369? ?
(7)
\left(
\begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{matrix}
\right)
( 1 2 3 4 5 6 7 8 9 ) \left( \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right) ?147?258?369? ?
(8)
\left\{
\begin{matrix}
1 & 2 & \cdots & 5 \\
6 & 7 & \cdots & 10 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha & \alpha+1 & \cdots & \alpha+4
\end{matrix}
\right\}
{ 1 2 ? 5 6 7 ? 10 ? ? ? ? α α + 1 ? α + 4 } \left\{ \begin{matrix} 1 & 2 & \cdots & 5 \\ 6 & 7 & \cdots & 10 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha & \alpha+1 & \cdots & \alpha+4 \end{matrix} \right\} ? ? ??16?α?27?α+1??????510?α+4?? ? ??
(9)
\begin{vmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{vmatrix}
∣ 1 2 3 4 5 6 7 8 9 ∣ \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} ?147?258?369? ?
(10)
\begin{cases}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases}
{ 3 x + 5 y + z 7 x ? 2 y + 4 z ? 6 x + 3 y + 2 z \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} ? ? ??3x+5y+z7x?2y+4z?6x+3y+2z?
(11)
f(n) =
\begin{cases}
n/2, & \text{if }n\text{ is even} \\
3n+1, & \text{if }n\text{ is odd}
\end{cases}
f ( n ) = { n / 2 , if? n ?is?even 3 n + 1 , if? n ?is?odd f(n) = \begin{cases} n/2, & \text{if }n\text{ is even} \\ 3n+1, & \text{if }n\text{ is odd} \end{cases} f(n)={n/2,3n+1,?if?n?is?evenif?n?is?odd?
4.复杂符号
(1)
\digamma
?
\digamma
?
(2)
\Delta
Δ
\Delta
Δ
(3)
\Gamma
Γ
\Gamma
Γ
(4)
\beth
?
\beth
?
(5)
\daleth
?
\daleth
?
(6)
\Xi
Ξ
\Xi
Ξ
(7)
\sqrt[n]{abc}
a
b
c
n
\sqrt[n]{abc}
nabc?
(8)
\overline{abc}
a
b
c
 ̄
\overline{abc}
abc
(9)
\overleftarrow{abc}
a
b
c
←
\overleftarrow{abc}
abc
(10)
\overbrace{abc}
a
b
c
?
\overbrace{abc}
abc
(11)
\underbrace
a
b
c
?
\overbrace{abc}
abc
(12)
\vert
∣
\vert
∣
(13)
\ |
∥
\|
∥
(14)
\langle
?
\langle
?
(15)
\rangle
?
\langle
?
(16)
\lfloor
?
\lfloor
?
(17)
\rfloor
?
\rfloor
?
(18)
\lceil
?
\lceil
?
(19)
\rceil
?
\rceil
?
(20)
\Uparrow
?
\Uparrow
?
(21)
\uparrow
↑
\uparrow
↑
(22)
\Downarrow
?
\Downarrow
?
(23)
\downarrow
↓
\downarrow
↓
(24)
\llcorner
?
\llcorner
└
(25)
\lrcorner
?
\lrcorner
┘
(26)
\ulcorner
?
\ulcorner
┌
(27)
\urcorner
?
\urcorner
┐
(28)
\sum
∑
\sum
∑
(29)
\prod
∏
\prod
∏
(30)
\coprod
?
\coprod
?
(31)
\int
∫
\int
∫
(32)
\oint
∮
\oint
∮
(33)
\iint
?
\iint
?
(34)
\biguplus
?
\biguplus
?
(35)
\bigcap
?
\bigcap
?
(36)
\bigcup
?
\bigcup
?
(37)
\bigoplus
?
\bigoplus
?
(38)
\bigotimes
?
\bigotimes
?
(39)
\bigodot
?
\bigodot
?
(40)
\bigvee
?
\bigvee
?
(41)
\bigwedge
?
\bigwedge
?
(42)
\bigsqcup
?
\bigsqcup
?
5.不常用符号
???????????????????????????????????????????
我是韩一,用知识认识更多的人,欢迎大家指正!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!