欧式变换、相似变换、仿射变换、射影变换的性质比较
(1)欧式变换
[
R
t
0
T
1
]
\begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix}
[R0T?t1?]
其有6个自由度。具有长度、夹角、体积不变性。
(2)相似变换
[
s
R
t
0
T
1
]
\begin{bmatrix} sR & t \\ 0^T & 1 \end{bmatrix}
[sR0T?t1?]
其有7个自由度。具有体积比不变性。
(3)仿射变换
[
A
t
0
T
1
]
\begin{bmatrix} A & t \\ 0^T & 1 \end{bmatrix}
[A0T?t1?]
其有12个自由度。具有平行性、体积比不变性。
(4)射影变换
[
A
t
a
T
v
]
\begin{bmatrix} A & t \\ a^T & v \end{bmatrix}
[AaT?tv?]
其有15个自由度。具有接触平面的相交和相切不变性。
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!