MapReduce编程:Join应用

2023-12-22 13:52:10

1. Reduce Join

Map 端的主要工作:为来自不同表或文件的 key/value 对,打标签以区别不同来源的记录。然后用连接字段作为key ,其余部分和新加的标志作为 value ,最后进行输出。
Reduce 端的主要工作: Reduce 端以连接字段作为 key 的分组已经完成,只需要在每一个分组当中将那些来源于不同文件的记录(在Map 阶段已经打标志)分开,最后进行合并就可以。
缺点 : 这种方式中,合并的操作是在 Reduce 阶段完成, Reduce 端的处理压力太大 , Map节点的运算负载则很低,资源利用率不高,且在 Reduce 阶段极易产生数据倾斜
案例
score.txt
name.txt
输出:
解题思路:
map输出key value是什么?
Map 输出 Key :编号
Map 输出 Value: Bean 对象
reduce输出key value是什么?
Reduce 输出 key Bean 对象
Reduce 输出 value:
ScoreBeann
package com.nefu.zhangna.reducejoin;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class ScoreBeann implements Writable {
    private String uid;
    private String sid;
    private int score;
    private String name;
    private String flag;
    public ScoreBeann() {
    }
    public String getUid(){
        return uid;
    }
    public void setUid(String uid) {
        this.uid = uid;
    }

    public String getSid() {
        return sid;
    }

    public void setSid(String sid) {
        this.sid = sid;
    }

    public int getScore() {
        return score;
    }

    public void setScore(int score) {
        this.score = score;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getFlag() {
        return flag;
    }

    public void setFlag(String flag) {
        this.flag = flag;
    }
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeUTF(uid);
        out.writeUTF(sid);
        out.writeInt(score);
        out.writeUTF(name);
        out.writeUTF(flag);
    }
    @Override
    public void readFields(DataInput in) throws IOException {
        this.uid=in.readUTF();
        this.sid=in.readUTF();
        this.score=in.readInt();
        this.name=in.readUTF();
        this.flag=in.readUTF();
    }
    @Override
    public String toString(){
        return "uid="+this.uid+"\t"+"name:"+this.name+"\t"+"score"+this.score;
    }
}

ScoreMapper

package com.nefu.zhangna.reducejoin;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

import java.io.IOException;


public class ScoreMapper extends Mapper<LongWritable, Text,Text, ScoreBeann>{
    private Text outk=new Text();
    private ScoreBeann outv=new ScoreBeann();
    private String filename;

    @Override
    protected void setup(Context context){
        FileSplit split=(FileSplit)  context.getInputSplit();
        filename=split.getPath().getName();
    }
    public void map(LongWritable key,Text value,Context context) throws IOException, InterruptedException {
        String line=value.toString();
        if (filename.contains("score")){
            String[] sp=line.split("\t");
            outk.set(sp[1]);
            outv.setSid(sp[1]);
            outv.setUid(sp[0]);
            outv.setName("");
            outv.setScore(Integer.parseInt(sp[2]));
            outv.setFlag("score");
        }else {
            String[] sp1=line.split("\t");
            outk.set(sp1[0]);
            outv.setUid("");
            outv.setName(sp1[1]);
            outv.setScore(0);
            outv.setSid(sp1[0]);
            outv.setFlag("name");
        }
        context.write(outk,outv);
    }
}

ScoreReducer

package com.nefu.zhangna.reducejoin;

import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
import java.lang.reflect.InvocationTargetException;
import java.util.ArrayList;

public class ScoreReducer extends Reducer<Text, ScoreBeann,ScoreBeann,NullWritable> {
    @Override
    protected void reduce(Text key,Iterable<ScoreBeann> values,Context context) throws IOException, InterruptedException {
        ArrayList<ScoreBeann> scoreBeanns=new ArrayList<ScoreBeann>();
        ScoreBeann namebean=new ScoreBeann();
        for (ScoreBeann value:values){
            if("score".equals(value.getFlag())){
                ScoreBeann tmpbean=new ScoreBeann();
                try {
                    BeanUtils.copyProperties(tmpbean,value);
                } catch (IllegalAccessException e) {
                    e.printStackTrace();
                } catch (InvocationTargetException e) {
                    e.printStackTrace();
                }
                scoreBeanns.add(tmpbean);
            }else {
                try {
                    BeanUtils.copyProperties(namebean,value);
                } catch (IllegalAccessException e) {
                    e.printStackTrace();
                } catch (InvocationTargetException e) {
                    e.printStackTrace();
                }
            }
        }
        for(ScoreBeann scoreBeann:scoreBeanns){
            scoreBeann.setName(namebean.getName());
            context.write(scoreBeann,NullWritable.get());
        }
    }
}

ScoreDriver

package com.nefu.zhangna.maxcount;


import com.nefu.zhangna.reducejoin.ScoreBeann;
import com.nefu.zhangna.reducejoin.ScoreMapper;
import com.nefu.zhangna.reducejoin.ScoreReducer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;


import java.io.File;
import java.io.IOException;

public class ScoreDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration configuration=new Configuration();
         Job job=Job.getInstance(configuration);
         job.setJarByClass(ScoreDriver.class);
         job.setMapperClass(ScoreMapper.class);
         job.setReducerClass(ScoreReducer.class);
         job.setMapOutputKeyClass(Text.class);
         job.setMapOutputValueClass(ScoreBeann.class);
         job.setOutputKeyClass(ScoreBeann.class);
         job.setOutputValueClass(NullWritable.class);
        FileInputFormat.setInputPaths(job,new Path("D:\\cluster\\input"));
        FileOutputFormat.setOutputPath(job,new Path("D:\\cluster\\score"));
        boolean result=job.waitForCompletion(true);
        System.exit(result?0:1);
    }
}

缺点 : 这种方式中,合并的操作是在 Reduce 阶段完成, Reduce 端的处理压力太大 , Map节点的运算负载则很低,资源利用率不高,且在 Reduce 阶段极易产生数据倾斜

2. Map Join

1) 使用场景 Map Join 适用于一张表十分小、一张表很大的场景。
2) 优点
思考 : Reduce 端处理过多的表,非常容易产生数据倾斜。怎么办 ?
Map 端缓存多张表,提前处理业务逻辑,这样增加 Map 端业务,减少 Reduce 端数
据的压力,尽可能的减少数据倾斜

文章来源:https://blog.csdn.net/zn2021220822/article/details/135150336
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。