输出网络结构图,mmdetection
2023-12-13 05:30:23
控制台输入:python tools/train.py /home/yuan3080/桌面/detection_paper_6/mmdetection-master1/mmdetection-master_yanhuo/work_dirs/lad_r50_paa_r101_fpn_coco_1x/lad_r50_a_r101_fpn_coco_1x.py
这个是输出方法里面的,不是原始方法。
如下所示,加一个print(model)
就可以
,然后运行:控制台输入
之后,之后输出即可,如下所示:
LAD(
(backbone): Res2Net(
(stem): Sequential(
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Res2Layer(
(0): Bottle2neck(
(conv1): Conv2d(64, 104, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(104, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): AvgPool2d(kernel_size=1, stride=1, padding=0)
(1): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(convs): ModuleList(
(0): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(2): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottle2neck(
(conv1): Conv2d(256, 104, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(104, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(convs): ModuleList(
(0): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(2): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(2): Bottle2neck(
(conv1): Conv2d(256, 104, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(104, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(convs): ModuleList(
(0): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(2): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(layer2): Res2Layer(
(0): Bottle2neck(
(conv1): Conv2d(256, 208, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(208, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): AvgPool2d(kernel_size=2, stride=2, padding=0)
(1): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(pool): AvgPool2d(kernel_size=3, stride=2, padding=1)
(convs): ModuleList(
(0): Conv2d(52, 52, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): Conv2d(52, 52, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(2): Conv2d(52, 52, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottle2neck(
(conv1): Conv2d(512, 208, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(208, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(convs): ModuleList(
(0): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(2): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(2): Bottle2neck(
(conv1): Conv2d(512, 208, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(208, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(convs): ModuleList(
(0): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(2): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(3): Bottle2neck(
(conv1): Conv2d(512, 208, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(208, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(convs): ModuleList(
(0): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(2): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(layer3): Res2Layer(
(0): Bottle2neck(
(conv1): Conv2d(512, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): AvgPool2d(kernel_size=2, stride=2, padding=0)
(1): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(pool): AvgPool2d(kernel_size=3, stride=2, padding=1)
(convs): ModuleList(
(0): Conv2d(104, 104, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): Conv2d(104, 104, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(2): Conv2d(104, 104, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottle2neck(
(conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(convs): ModuleList(
(0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(2): Bottle2neck(
(conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(convs): ModuleList(
(0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(3): Bottle2neck(
(conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(convs): ModuleList(
(0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(4): Bottle2neck(
(conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(convs): ModuleList(
(0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(5): Bottle2neck(
(conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(convs): ModuleList(
(0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(layer4): Res2Layer(
(0): Bottle2neck(
(conv1): Conv2d(1024, 832, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(832, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): AvgPool2d(kernel_size=2, stride=2, padding=0)
(1): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(pool): AvgPool2d(kernel_size=3, stride=2, padding=1)
(convs): ModuleList(
(0): Conv2d(208, 208, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): Conv2d(208, 208, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(2): Conv2d(208, 208, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottle2neck(
(conv1): Conv2d(2048, 832, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(832, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(convs): ModuleList(
(0): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(2): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(2): Bottle2neck(
(conv1): Conv2d(2048, 832, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(832, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(convs): ModuleList(
(0): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(2): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bns): ModuleList(
(0): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
)
init_cfg={'type': 'Pretrained', 'checkpoint': 'torchvision://resnet50'}
(neck): FPN(
(lateral_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
)
(1): ConvModule(
(conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
)
(2): ConvModule(
(conv): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
)
)
(fpn_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
)
(4): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
)
)
)
init_cfg={'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'}
(bbox_head): LADHead(
(loss_cls): FocalLoss()
(loss_bbox): GIoULoss()
(relu): ReLU(inplace=True)
(cls_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
(1): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
(2): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
(3): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(reg_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
(1): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
(2): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
(3): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(atss_cls): Conv2d(256, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(atss_reg): Conv2d(256, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(atss_centerness): Conv2d(256, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(scales): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
(3): Scale()
(4): Scale()
)
(loss_centerness): CrossEntropyLoss(avg_non_ignore=False)
)
文章来源:https://blog.csdn.net/qq_44666320/article/details/134958363
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!