泰森多边形&半平面求交 - 洛谷 - P3297 [SDOI2013] 逃考
2023-12-14 19:55:49
欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。
往期相关背景
半平面求交 点击前往
voronoi 图求解
点击前往
题目大意
题目链接
https://www.luogu.com.cn/problem/P3297
小杨家是一个矩阵,所有亲戚都在矩阵里。小杨一开始只有离一个亲戚最近。
小杨在家里可以随意移动,每次移动都会被最近的亲戚监视到,问小杨想要离开家,最少要被几个亲戚监视。
解析
整体思路是先对所有亲戚所在位置进行三角剖分,然后求出泰森多边形。
这样可以得到每个点所管辖区域邻近区域的关系。
那么从一个区域走到另一个区域是增加1个人头。
最后利用广度优先搜索最短路即可求解。
那么核心问题就是如何求得每个点与附近点的关系。
最直观的做法是,先进行三角剖分,由于voronoi区域是通过所有边的垂直平分线包围形成的。所以三角形的边就代表点之间的连通关系。
但是会有一些特殊情况,
如上图,P1, P2, P3, P4是共圆的,蓝色线是其三角剖分。
本来红色线是一个分割线,由于红色线与P3P2的交点与4点距离一样,所以如果想直接从P3走到P2那么会被4个人同时监视到,所以该分割失效。
改进算法:
通过计算垂直平分线,得到区域边界。
利用半平面求交,依次加入边(同时建立对应点到点的关系),如果之前算出来的交点在加入的边上,需要删除之前的边,同时之前建立点的关系也要删除。
注意
: 半平面求交,对于非封闭区域需要从第1条边开始往队列里加入。
特殊情况:没有人看管,少于3人看管,看管人员共线
代码
#include<stdio.h>
#include<cmath>
#include <algorithm>
#include <vector>
#include <list>
#include <cstring>
#include <utility>
#include <queue>
#include <map>
using namespace std;
const double EPS = 1e-8;
const int N = 1e6 + 10;
const int M = 1e6 + 10;
int cmp(double d) {
if (abs(d) < EPS)return 0;
if (d > 0)return 1;
return -1;
}
class Point {
public:
double x, y;
int id;
Point() {}
Point(double a, double b) :x(a), y(b) {}
Point(const Point& p) :x(p.x), y(p.y), id(p.id) {}
void in() {
scanf("%lf %lf", &x, &y);
}
void out() {
printf("%f %f\n", x, y);
}
double dis() {
return sqrt(x * x + y * y);
}
double dis2() {
return x * x + y * y;
}
Point operator -() const {
return Point(-x, -y);
}
Point operator -(const Point& p) const {
return Point(x - p.x, y - p.y);
}
Point operator +(const Point& p) const {
return Point(x + p.x, y + p.y);
}
Point operator *(double d)const {
return Point(x * d, y * d);
}
Point operator /(double d)const {
return Point(x / d, y / d);
}
void operator -=(Point& p) {
x -= p.x;
y -= p.y;
}
void operator +=(Point& p) {
x += p.x;
y += p.y;
}
void operator *=(double d) {
x *= d;
y *= d;
}
void operator /=(double d) {
this ->operator*= (1 / d);
}
bool operator<(const Point& a) const {
return x < a.x || (abs(x - a.x) < EPS && y < a.y);
}
bool operator==(const Point& a) const {
return abs(x - a.x) < EPS && abs(y - a.y) < EPS;
}
};
// 向量操作
double cross(const Point& a, const Point& b) {
return a.x * b.y - a.y * b.x;
}
double dot(const Point& a, const Point& b) {
return a.x * b.x + a.y * b.y;
}
class Point3D {
public:
double x, y, z;
Point3D() {}
Point3D(double a, double b, double c) :x(a), y(b), z(c) {}
Point3D(const Point3D& p) :x(p.x), y(p.y), z(p.z) {}
double dis() {
return sqrt(x * x + y * y + z * z);
}
double dis2() {
return x * x + y * y + z * z;
}
Point3D operator -(const Point3D& p) const {
return Point3D(x - p.x, y - p.y, z - p.z);
}
Point3D operator +(const Point3D& p) const {
return Point3D(x + p.x, y + p.y, z + p.z);
}
Point3D operator *(double d)const {
return Point3D(x * d, y * d, z * d);
}
Point3D operator /(double d)const {
return Point3D(x / d, y / d, z / d);
}
void operator -=(Point3D& p) {
x -= p.x;
y -= p.y;
z -= p.z;
}
void operator +=(Point3D& p) {
x += p.x;
y += p.y;
z += p.z;
}
void operator *=(double d) {
x *= d;
y *= d;
z *= d;
}
void operator /=(double d) {
this ->operator*= (1 / d);
}
};
// 向量操作
Point3D cross(const Point3D& a, const Point3D& b) {
return Point3D(a.y * b.z - a.z * b.y, -a.x * b.z + a.z * b.x,
a.x * b.y - a.y * b.x);
}
double dot(const Point3D& a, const Point3D& b) {
return a.x * b.x + a.y * b.y + a.z * b.z;
}
class Line {
public:
Point front, tail;
int ind;
double ang;
Line() {}
Line(const Point& a, const Point& b) :front(a), tail(b) {
ang = atan2(front.y - tail.y, front.x - tail.x);
}
Line(const Point& a, const Point& b, int i) :front(a), tail(b), ind(i) {
ang = atan2(front.y - tail.y, front.x - tail.x);
}
};
/*
0 不相交
1 相交
0 平行/重合
*/
int cross(const Line& a, const Line& b) {
Point dir1 = a.front - a.tail;
Point dir2 = b.front - b.tail;
if (cmp(cross(dir1, dir2)) == 0) {
return 0;
}
if (cmp(cross(a.front - b.tail, dir2)) * cmp(cross(a.tail - b.tail, dir2)) >= 0)return 0;
if (cmp(cross(b.front - a.tail, dir1)) * cmp(cross(b.tail - a.tail, dir1)) >= 0)return 0;
return 1;
}
int inCircle(Point p0, Point p1, Point p2, Point p3) {
Point d1 = p1 - p0;
Point d2 = p2 - p0;
if (cross(d1, d2) < 0)return inCircle(p0, p2, p1, p3); // 保证平面法向向上
// 构建映射点
Point3D lift0(p0.x, p0.y, p0.dis2());
Point3D lift1(p1.x, p1.y, p1.dis2());
Point3D lift2(p2.x, p2.y, p2.dis2());
Point3D lift3(p3.x, p3.y, p3.dis2());
Point3D z1(lift1 - lift0), z2(lift2 - lift0);
Point3D normal = cross(z1, z2); // 计算平面法向
double project = dot(normal, lift3 - lift0); // 计算点到平面距离
return cmp(project);
}
class EdgeDelaunay {
public:
int id;
std::list<EdgeDelaunay>::iterator c;
EdgeDelaunay(int id = 0) { this->id = id; }
};
class Delaunay {
public:
std::list<EdgeDelaunay> head[N]; // graph
Point p[N];
int n = 0;
void init(int psize, Point ps[]) {
this->n = psize;
for (int i = 0; i < psize; ++i) head[i].clear();
memcpy(this->p, ps, sizeof(Point) * n);
std::sort(this->p, this->p + n);
divide(0, n - 1);
}
void addEdge(int u, int v) {
head[u].push_front(EdgeDelaunay(v));
head[v].push_front(EdgeDelaunay(u));
head[u].begin()->c = head[v].begin();
head[v].begin()->c = head[u].begin();
}
void divide(int l, int r) {
if (r - l <= 1) { // #point <= 2
for (int i = l; i <= r; i++)
for (int j = i + 1; j <= r; j++) addEdge(i, j);
return;
}
int mid = (l + r) / 2;
divide(l, mid);
divide(mid + 1, r);
std::list<EdgeDelaunay>::iterator it;
int nowl = l, nowr = r;
for (int update = 1; update;) {
// 查找左边最低线位置
update = 0;
Point ptL = p[nowl], ptR = p[nowr];
for (it = head[nowl].begin(); it != head[nowl].end(); it++) {
Point t = p[it->id];
double v = cross(ptL - ptR, t - ptR);
if (cmp(v) > 0 || (cmp(v) == 0 && (t - ptR).dis() < (ptL - ptR).dis())) {
nowl = it->id, update = 1;
break;
}
}
if (update) continue;
// 查找右边最低线位置
for (it = head[nowr].begin(); it != head[nowr].end(); it++) {
Point t = p[it->id];
double v = cross(ptR - ptL, t - ptL);
if (cmp(v) < 0 || (cmp(v) == 0 && (t - ptL).dis() < (ptL - ptR).dis())) {
nowr = it->id, update = 1;
break;
}
}
}
addEdge(nowl, nowr); // 添加基线
for (; true;) {
Point ptL = p[nowl], ptR = p[nowr];
int ch = -1, side = 0;
for (it = head[nowl].begin(); it != head[nowl].end(); it++) {
if (cmp(cross(ptR - ptL, p[it->id] - ptL)) <= 0)continue; // 判断夹角是否小于180
if (ch == -1 || inCircle(ptL, ptR, p[ch], p[it->id]) < 0) {
ch = it->id, side = -1;
}
}
for (it = head[nowr].begin(); it != head[nowr].end(); it++) {
if (cmp(cross(p[it->id] - ptR, ptL - ptR)) <= 0) continue;// 判断夹角是否小于180
if (ch == -1 || inCircle(ptL, ptR, p[ch], p[it->id]) < 0) {
ch = it->id, side = 1;
}
}
if (ch == -1) break; // 所有线已经加完
if (side == -1) {
for (it = head[nowl].begin(); it != head[nowl].end();) {
// 判断是否相交,边缘不算相交
if (cross(Line(ptL, p[it->id]), Line(ptR, p[ch]))) {
head[it->id].erase(it->c);
head[nowl].erase(it++);
}
else {
it++;
}
}
nowl = ch;
addEdge(nowl, nowr);
}
else {
for (it = head[nowr].begin(); it != head[nowr].end();) {
// 判断是否相交,边缘不算相交
if (cross(Line(ptR, p[it->id]), Line(ptL, p[ch]))) {
head[it->id].erase(it->c);
head[nowr].erase(it++);
}
else {
it++;
}
}
nowr = ch;
addEdge(nowl, nowr);
}
}
}
std::vector<std::pair<int, int> > getEdge() {
std::vector<std::pair<int, int> > ret;
ret.reserve(n);
std::list<EdgeDelaunay>::iterator it;
for (int i = 0; i < n; i++) {
for (it = head[i].begin(); it != head[i].end(); it++) {
ret.push_back(std::make_pair(p[i].id, p[it->id].id));
}
}
return ret;
}
};
int cmp(const Line& a, const Line& b) {
//auto ta = atan2(a.front.y - a.tail.y, a.front.x - a.tail.x);
//auto tb = atan2(b.front.y - b.tail.y, b.front.x - b.tail.x);
return cmp(a.ang - b.ang);
}
// 点在直线哪一边>0 左边,<0边
int SideJudge(const Line& a, const Point& b) {
return cmp(cross(a.front - a.tail, b - a.tail));
}
int LineSort(const Line& a, const Line& b) {
int c = cmp(a, b);
if (c)return c < 0;
return SideJudge(b, a.front) > 0;
}
/*
点p 到 p+r 表示线段1
点q 到 q+s 表示线段2
线段1 上1点用 p' = p+t*r (0<=t<=1)
线段2 上1点用 q' = q+u*s (0<=u<=1)
让两式相等求交点 p+t*r = q+u*s
两边都叉乘s
(p+t*r)Xs = (q+u*s)Xs
pXs + t*rXs = qXs
t = (q-p)Xs/(rXs)
同理,
u = (p-q)Xr/(sXr) -> u = (q-p)Xr/(rXs)
以下分4种情况:
1. 共线,sXr==0 && (q-p)Xr==0, 计算 (q-p)在r上的投影在r长度上的占比t0,
计算(q+s-p)在r上的投影在r长度上的占比t1,查看[t0, t1]是否与范围[0,1]有交集。
如果t0>t1, 则比较[t1, t0]是否与范围[0,1]有交集。
t0 = (q-p)*r/(r*r)
t1 = (q+s-p)*r/(r*r) = t0 + s · r / (r · r)
2. 平行sXr==0 && (q-p)Xr!=0
3. 0<=u<=1 && 0<=t<=1 有交点
4. 其他u, t不在0到范围内,没有交点。
*/
pair<double, double> intersection(const Point& q, const Point& s, const Point& p, const Point& r) {
// 计算 (q-p)Xr
auto qpr = cross(q - p, r);
auto qps = cross(q - p, s);
auto rXs = cross(r, s);
if (cmp(rXs) == 0)return { -1, -1 }; // 平行或共线
// 求解t, u
// t = (q-p)Xs/(rXs)
auto t = qps / rXs;
// u = (q-p)Xr/(rXs)
auto u = qpr / rXs;
return { u, t };
}
Point LineCross(const Line& a, const Line& b) {
Point dira = a.front - a.tail;
Point dirb = b.front - b.tail;
auto p = intersection(a.tail, dira, b.tail, dirb);
return a.tail + dira * p.first;
}
class HalfPlane {
public:
vector<Line> lines;
void addLine(const Line& a) {
lines.push_back(a);
}
vector<int> run(vector<Point>& ps) {
sort(lines.begin(), lines.end(), LineSort);
vector<int> q(lines.size() + 10);
vector<Point> t(lines.size() + 10);
// 查找到第1条线
int k = lines.size() - 1;
bool isBoundary = false;
for (; k >= 0; --k) {
int nk = (k + 1)%lines.size();
if (cmp(cross(lines[k].front - lines[k].tail, lines[nk].front - lines[nk].tail)) <= 0) {
isBoundary = true;
k = nk;
break;
}
}
if (!isBoundary)k = 0;
int l = -1, r = 0;
q[0] = k;
for (int i = (k+1)%lines.size(); i !=k; i=(i+1)%lines.size()) {
while (r - l > 1 && SideJudge(lines[i], t[r]) <= 0)r--;
while (r - l > 1 && SideJudge(lines[i], t[l + 2]) <= 0)l++;
q[++r] = i;
t[r] = LineCross(lines[q[r]], lines[q[r - 1]]);
}
while (r - l > 2 && SideJudge(lines[q[l + 1]], t[r]) <= 0)r--;
vector<int> ans;
for (int i = l + 1; i <= r; ++i) {
ans.push_back(lines[q[i]].ind);
if(i>l+1)ps.push_back(t[i]);
}
if (!isBoundary) {
t[r + 1] = LineCross(lines[q[l + 1]], lines[q[r]]);
ps.push_back(t[r + 1]);
}
return ans;
}
};
class Edge {
public:
Edge() {}
Edge(int t, int n, double w) :to(t), next(n), weight(w) {}
int index;
int from;
int to;
int next;
double weight;
bool isValid() const { return to >= 0; }
};
class Graph {
public:
int size;
Graph() {}
void init(int n) {
size = n;
head.assign(n, -1);
edge.resize(M * 2);
len = 0;
emptyEdge = Edge(-1, -1, 0);
}
Edge headEdge(int a) {
if (head[a] < 0)return emptyEdge;
return edge[head[a]];
}
Edge nextEdge(const Edge& ed) {
if (ed.next < 0)return emptyEdge;
return edge[ed.next];
}
void add(int a, int b, double w) {
//printf("add : %d %d %.6lf\n", a, b, w);
edge[len] = Edge(b, head[a], w);
edge[len].index = len;
head[a] = len;
len++;
}
void del(int ind) {
edge[ind].to = -1;
}
private:
vector<int> head;
int len;
Edge emptyEdge;
vector<Edge> edge;
};
Graph g;
Point oiPs[N];
Delaunay de;
bool isBoundary[N];
int bfs(int n, int start) {
map<int, bool> vis;
int step = 1;
queue<int> qu;
qu.push(start);
vis[start] = true;
while (!qu.empty()) {
int len = qu.size();
while (len--) {
auto front = qu.front();
qu.pop();
if (isBoundary[front]) return step;
for (Edge ed = g.headEdge(front); ed.isValid(); ed = g.nextEdge(ed)) {
if (vis[ed.to])continue;
vis[ed.to] = true;
qu.push(ed.to);
}
}
step++;
}
return step;
}
void solve() {
int n, t;
scanf("%d", &t);
int x1, y1, x0, y0;
while (t--) {
scanf("%d", &n);
scanf("%d%d%d%d", &x1, &y1, &x0, &y0);
// 输入亲戚坐标
for (int i = 0; i < n; ++i) {
int a, b;
scanf("%d%d", &a, &b);
oiPs[i].x = a;
oiPs[i].y = b;
oiPs[i].id = i;
}
if (n == 0) {
puts("0");
continue;
}
if (n < 4) {
puts("1");
continue;
}
// 所有点共线
bool oneLine = true;
for (int i = 2; i < n; ++i) {
if (cmp(cross(oiPs[0] - oiPs[1], oiPs[0] - oiPs[i])))oneLine = false;
}
if (oneLine) {
puts("1");
continue;
}
// if (n > 600) exit(1);
de.init(n, oiPs);
auto oiedges = de.getEdge();
vector<vector<int>> link(n, vector<int>());
for (auto oie : oiedges) {
link[oie.first].push_back(oie.second);
}
g.init(n);
int start = 0;
for (int i = 0; i < n; ++i) {
// 遍历每个边界点,收集邻边,并按照逆时针排序。
int len = link[i].size();
auto &ind = link[i];
HalfPlane hp;
// 求voronoi 边界之间交点
for (int j = 0; j < len; ++j) {
Point mid = (oiPs[i] + oiPs[ind[j]]) / 2;
Point dir = oiPs[ind[j]] - oiPs[i];
dir = { -dir.y, dir.x }; // 旋转90度
hp.addLine(Line(mid+dir, mid, j));
}
vector<Point> ps;
auto ids = hp.run(ps);
sort(ids.begin(), ids.end());
int k = 0;
for (int j = 0; j < len && k<ids.size(); ++j) {
if (ids[k] == j) {
g.add(i, ind[j],1);
k++;
}
}
isBoundary[i] = ps.size()!=ids.size();
for (auto& p : ps) {
if (isBoundary[i])break;
//if (p.x > 0 && p.x < x1 && p.y>0 && p.y < y1)continue;
if(p.x<0 || p.x>x1 || p.y<0 ||p.y>y1) isBoundary[i] = true;
}
if ((oiPs[i] - Point(x0, y0)).dis() < (oiPs[start] - Point(x0, y0)).dis())start = i;
}
printf("%d\n", bfs(n, start));
}
}
int main() {
solve();
return 0;
}
/*
2
4
10 10 5 5
5 6
3 5
7 5
5 3
17
14 12 7 6
7 11
6 9
7 7
1 10
2 20
1 6
2 6
1 1
2 2
5 1
5 2
13 1
12 2
12 7
13 7
12 11
13 11
5
10 10 5 5
3 3
5 5
3 7
7 3
7 7
5
10 10 5 5
0 0
5 5
0 10
10 0
10 10
3
10 10 5 5
0 0
5 5
0 10
4
10 10 5 5
0 0
5 5
10 10
6 6
10
10 10 5 5
5 5
4 4
6 4
4 6
6 6
7 7
7 3
3 7
7 3
1 1
*/
本人码农,希望通过自己的分享,让大家更容易学懂计算机知识。创作不易,帮忙点击公众号的链接。
文章来源:https://blog.csdn.net/chenbb1989/article/details/134898331
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!