算法工程师-机器学习面试题总结(5)
目录
6.介绍FFM场感知分解机器(Field-aware Factorization Machine),说说与FM异同?
?7.使用FM进行模型训练时候,有哪些核心参数对模型效果影响大?
?10.你是如何理解熵?从数学原理上解释熵公式可以作为信息不确定性的度量?
11.联合熵、条件熵、KL散度、信息增益、信息增益比、gini系数都是什么?各有什么优缺点?
13.决策树如何防止过拟合?前剪枝和后剪枝过程是怎样的?剪枝条件都是什么
19.为什么多个弱分类器组合效果会比单个要好?如何组合弱分类器可以获得更好的结果?原因是什么?
?
1.FM模型与逻辑回归相比有什么优缺点?
FM(因子分解机)模型和逻辑回归是两种常见的预测建模方法,它们在一些方面有不同的优缺点
FM模型的优点:
1. 能够捕获特征之间的交互作用:FM模型通过对特征向量的低阶交叉进行建模,能够有效地捕获特征之间的交互作用。这在处理稀疏数据和高维特征空间时特别有用。
2. 可以处理稀疏数据:FM模型能够很好地处理稀疏数据,因为它可以使用低阶交叉来表示特征之间的关联,而不需要显式的特征工程。
3. 参数较少:相对于逻辑回归,FM模型具有较少的参数,这使得训练和推断的效率更高。
4. 预测效果好:因为FM模型能够捕捉特征之间的交互作用,所以在一些特征之间存在非线性关系的任务上,它往往能够取得比逻辑回归更好的预测效果。
2.FM模型的缺点:
1. 计算成本较高:FM模型的计算复杂度较高,在处理大规模数据集时可能会面临计算资源的限制。
2. 对于高阶交叉的建模能力较弱:FM模型只能对低阶交叉进行建模,对于高阶交叉的处理能力相对较弱。
3. 需要特征工程:FM模型对特征的表示要求较高,需要进行一定程度的特征工程来挖掘特征的交互关系。
3.逻辑回归的优点:
1. 简单而直观:逻辑回归的原理和模型形式相对简单,易于理解和实现。
2. 计算效率高:逻辑回归的计算复杂度较低,可以很快地进行模型训练和推断。
3. 对于线性关系的建模效果好:对于线性可分的问题,逻辑回归通常能够取得很好的效果。
4.逻辑回归的缺点:
1. 仅适用于线性关系:逻辑回归假设了特征和标签之间的线性关系,对于非线性问题表现较差。
2. 特征交互的建模能力较弱:逻辑回归无法直接对特征之间的交互进行建模,需要进行特征工程来引入非线性特征。
3. 容易受到异常值和噪声的影响:逻辑回归的训练过程中,异常值和噪声可能会对模型预测产生较大的影响,容易产生偏差。
总的来说,FM模型在能够处理特征交互和稀疏数据方面相对优势明显;而逻辑回归在简单性和计算效率方面更具优势,适用于线性关系较为明显、数据量较小的问题。选择使用哪种模型应根据具体问题的特点和数据的性质来进行综合考量。
5.为什么FM模型计算复杂度是O(kn)?
FM(Factorization Machines)模型是一种用于解决高维稀疏数据的模型,具有很好的特征组合能力。它可以通过因子化特征之间的交互来捕捉特征之间的高阶关系。
FM模型的计算复杂度为O(kn),其中n表示特征的数量,k表示因子化特征的维度。以下是对这个计算复杂度的解释:
1. 初始化:FM模型需要对每个特征初始化k维的随机因子,这涉及到n * k的计算量,所以初始化的复杂度为O(kn)。
2. 一阶部分(线性项):FM模型的一阶部分是通过对每个特征进行线性组合来建模,并对每个特征维度对应的权重进行更新。由于需要对n个特征进行处理,所以一阶部分的复杂度为O(n)。
3. 二阶部分(交互项):FM模型通过对两两特征进行交互,并把相应的因子乘积相加来建模特征的交互作用。因为有n个特征,所以需要对n个特征对进行计算。对于每个特征对,由于每个因子之间的交互需要进行乘法计算,所以每个特征对的计算复杂度为O(k)。因此,整个二阶部分的复杂度为O(kn)。
综上所述,FM模型的计算复杂度为O(kn),其中初始化部分的复杂度为O(kn),一阶部分的复杂度为O(n),二阶部分的复杂度为O(kn)。相比于一些高阶机器学习模型,FM模型具有较低的计算复杂度,并且适用于处理大规模稀疏数据的场景。
6.介绍FFM场感知分解机器(Field-aware Factorization Machine),说说与FM异同?
场感知分解机器(Field-aware Factorization Machine,以下简称FFM)是对因子分解机(Factorization Machine,以下简称FM)的改进和扩展。
FM是一种基于线性模型和因子分解的机器学习模型,用于解决稀疏数据和高维特征的问题。它通过对特征间的交互进行建模,可以捕捉到特征之间的非线性关系。
而FFM在FM的基础上,对特征之间的交互进行了更细粒度的建模。在FM中,特征的交互关系只被建模为一种因子,而FFM将每个特征分成不同的场(Field),并为每个场组合不同特征之间的因子。这样做的好处是能够更好地建模特征之间的非对称关系,提升模型的表达能力。
与FM相比,FFM具有以下几点不同:
1. FFM引入了场的概念,可以对不同的特征组合建模,从而考虑了更多特征之间的关系。
2. FFM的参数量更大,因为需要为每个场的特征组合学习不同的因子,相对而言模型更复杂。
3. FFM对稀疏特征的处理更加灵活,可以更好地应对高维稀疏数据。
总的来说,FFM相比于FM在建模能力上更强,可以更好地处理特征之间的关系,特别适用于稀疏高维数据的建模任务。但是由于模型复杂度提高,训练和推理的计算成本也会增加。
?7.使用FM进行模型训练时候,有哪些核心参数对模型效果影响大?
在使用FM进行模型训练时,以下是一些核心参数对模型效果影响较大的建议:
1. 因子数(k值):因子数决定了模型的复杂度和记忆能力。较大的因子数可以提高模型的准确性,但也会增加计算和内存开销。一般来说,可以从8-200之间尝试不同的因子数。
2. 学习率(learning rate):学习率决定了参数更新的步长。较小的学习率可以增加模型稳定性,但训练速度可能较慢;较大的学习率可以提高训练速度,但可能导致模型不稳定。通常可以从0.001-0.1之间尝试不同的学习率。
3. 正则化参数(lambda):正则化参数用于控制模型的过拟合情况。较大的正则化参数可以减少过拟合,但可能会降低模型表现。一般来说,可以从0.001-0.1之间尝试不同的正则化参数。
4. 迭代次数(epochs):迭代次数决定了模型训练的轮数。较大的迭代次数可以增加模型的准确性,但也会增加训练时间。一般可以从10-100之间尝试不同的迭代次数。
除了上述核心参数,还有其他一些与数据集和任务相关的参数,如特征维度、batch size等,也可能对模型性能产生影响。在实际应用中,需要根据具体情况进行调整和优化。
8.如何从神经网络的视角看待FM模型?
神经网络是一种模拟人脑神经系统的计算模型,可以通过大量神经元之间的连接和信息传递来解决各种问题。与传统的机器学习模型相比,神经网络具有更强大的表达能力和学习能力。
FM模型(Factorization Machines)是一种用于处理高维稀疏数据的机器学习模型,可以用于推荐系统、广告点击率预测等任务。FM模型通过特征矩阵的低阶交互项来建模特征之间的关系,进而预测目标变量。
从神经网络的视角来看,FM模型可以看作是一个特殊的神经网络结构。在FM模型中,特征之间的交互项可以看作是神经元之间的连接权重。FM模型通过学习这些权重来捕捉特征之间的关系,并进行预测。
与传统的神经网络不同,FM模型的参数只与特征之间的交互项有关,而与特征的维度无关。这一点使得FM模型在处理高维稀疏数据时具有一定的优势。
虽然FM模型和神经网络在机器学习中属于两种不同的算法模型,但可以从神经网络的视角来理解FM模型的原理和工作方式。这种视角可以帮助我们更好地理解FM模型,并在实践中更好地应用和扩展。
9.决策树的建树过程是怎样的?
决策树的建树过程可以分为两个主要步骤:特征选择和树的生成。
1. 特征选择:
在决策树的建树过程中,选择最佳的特征来划分数据集是非常重要的。常用的特征选择方法有信息增益(Information Gain)、增益率(Gain Ratio)、基尼系数(Gini Index)等。这些方法都是通过计算特征的不纯度或分裂后的增益来评估特征的重要性。选择具有最大增益或最小不纯度的特征作为划分标准。
2. 树的生成:
树的生成是一个递归的过程。通过选定的划分特征,将当前节点的数据集划分成更小的子集。对每个子集,重复上述步骤,继续选择最佳的特征并划分数据,直到满足某个终止条件,例如数据集已完全划分,或数据集中的样本属于同一类别。在每个节点上,根据划分后的子集创建一个子节点,并将数据集分配给该子节点。
?10.你是如何理解熵?从数学原理上解释熵公式可以作为信息不确定性的度量?
熵是信息理论中经常使用的一个概念,用来衡量一个随机事件发生时所包含的信息量或不确定性。从数学原理上解释,熵公式可以作为信息不确定性的度量的一个方式。
熵的数学定义如下:
H(X) = -∑ P(x) log2 P(x)
其中,H(X) 表示随机变量 X 的熵,P(x) 表示事件 x 发生的概率。熵公式中的对数可以看作是对信息量的平均编码长度的衡量,而概率 P(x) 则是每个事件发生的概率。
如果一个随机事件 X 的熵较大,意味着其中包含较多的不确定性,即事件 X 的结果很难预测,需要更多的信息来确定结果。相反,如果熵较小,意味着事件 X 的结果比较确定,需要的信息量较少。
举个简单的例子,假设有两个骰子,一个是均匀骰子,另一个是不均匀骰子,不均匀骰子更有可能掷出1。对于均匀骰子,每个面的概率都是1/6,而对于不均匀骰子,掷出1的概率可能会更高。在这种情况下,均匀骰子的熵较高,因为结果更难预测,而不均匀骰子的熵较低,因为结果更容易预测。
因此,熵公式可以被解释为衡量一个随机事件的不确定性程度,熵值越大,则不确定性越高。而通过对事件发生概率的求对数,可以将信息量的度量转化为熵的形式,从而方便计算和比较不同随机事件的不确定性。
11.联合熵、条件熵、KL散度、信息增益、信息增益比、gini系数都是什么?各有什么优缺点?
1. 联合熵(Joint Entropy):联合熵是指多个随机变量的熵的总和。它用于衡量多个随机变量的联合不确定性。联合熵的计算方法类似于单个随机变量的熵的计算,只是将概率转化为联合概率。
2. 条件熵(Conditional Entropy):条件熵是指给定一个随机变量的条件下,另一个随机变量的熵。它用于衡量在已知某些信息的情况下,另一个随机变量的不确定性。条件熵的计算方法是将联合概率除以给定的条件概率。
3. KL散度(Kullback-Leibler Divergence):KL散度是用于衡量两个概率分布之间的差异。它衡量当用一个概率分布来拟合另一个分布时所需的额外平均编码位数。KL散度的计算方法是对两个概率分布的每个事件进行求和,乘以其概率之差的对数。
4. 信息增益(Information Gain):信息增益是在决策树算法中使用的概念,用于衡量一个特征对于分类结果的影响程度。它是指在已知一个特征的情况下,通过该特征能够减少的熵的量。信息增益的计算方法是用类别的熵减去给定特征的条件熵。
5. 信息增益比(Information Gain Ratio):信息增益比是信息增益的一种改进版本,用于解决信息增益偏向取值较多的特征的问题。它是信息增益除以该特征本身的熵,可以对特征取值较多的情况进行惩罚。选取划分属性时,优先选择信息增益比较大的特征。
6. Gini系数:Gini系数常用于决策树算法中的特征选择,用于衡量一个特征的纯度或分类的不确定性。Gini系数的计算方法是对每个类别的概率的平方进行求和,然后用1减去这个和。
各个概念的优缺点如下:
- 联合熵和条件熵可以提供关于随机变量之间关系的信息,但计算开销较大。
- KL散度可以衡量两个分布之间的差异,但不具备对称性。
- 信息增益可以衡量一个特征对分类结果的影响,但对取值较多的特征有偏好。
- 信息增益比可以解决信息增益对取值较多的特征的偏好问题。
- Gini系数可以衡量特征的纯度,但没有给出具体的概率值。
12.ID3、C4.5、CART有啥异同?
ID3(Iterative Dichotomiser 3)是最早的决策树算法之一,由Ross Quinlan在1986年提出。它使用信息增益(Information Gain)作为特征选择的准则,根据特征的信息增益来划分数据,目标是构建出信息增益最大的决策树。ID3只能处理离散特征,对于连续特征需要进行离散化处理。
C4.5是ID3的改进版本,由Ross Quinlan在1993年提出。C4.5与ID3的最大差别在于特征选择的准则。C4.5使用的准则是信息增益比(Gain Ratio),通过对信息增益进行归一化来解决特征取值较多时的偏好问题。此外,C4.5可以处理连续特征,对于连续特征会先进行离散化处理。
CART(Classification and Regression Trees)是由Breiman等人在1984年提出的决策树算法。与ID3和C4.5不同,CART可以同时处理分类和回归问题。在分类问题中,CART使用基尼系数(Gini Index)作为特征选择的准则,目标是构建出基尼系数最小的决策树。在回归问题中,CART使用平方误差最小化作为特征选择的准则,目标是构建出平方误差最小的决策树。CART也可以处理连续特征,通过尝试所有可能的划分点选择最优划分。
总结来说,ID3、C4.5和CART都是决策树算法,但它们在特征选择的准则、处理连续特征的能力以及回归问题的处理上有一些异同。选择使用哪个算法取决于具体问题和数据的特点。
13.决策树如何防止过拟合?前剪枝和后剪枝过程是怎样的?剪枝条件都是什么
决策树可以通过剪枝(pruning)来防止过拟合,减少模型在训练数据上的错误率。
前剪枝(Pre-Pruning)是指在构建决策树的过程中,在判断是否继续分裂某个节点之前,先进行一定的判断和限制,以防止过度拟合。前剪枝的剪枝条件通常包括以下几个:
1. 最大深度限制:限制决策树的最大深度,避免过于复杂的树结构。
2. 叶子节点样本数限制:限制叶子节点上的样本数,如果样本数低于设定值,停止分裂。
3. 不纯度下降限制:限制节点划分后的不纯度下降值,如果下降值低于设定阈值,停止分裂。
后剪枝(Post-Pruning)是指先构造一棵完整的决策树,然后通过剪枝来进行模型的简化。后剪枝的剪枝条件通常使用基于验证集的损失函数进行评估,主要包括以下两个步骤:
1. 自底向上剪枝:从决策树的叶子节点开始剪枝,逐步将叶子节点替换成单一的类别或者将叶子节点合并为一个共同的父节点。剪枝过程中需要计算剪枝后的决策树在验证集上的性能表现,如果剪枝后性能没有显著下降,就保留剪枝后的树。
2. 剪枝终止条件:剪枝过程可以通过交叉验证确定终止条件。通常会将数据集划分为训练集和验证集,在验证集上评估剪枝后的模型性能,如果性能没有显著提升,就停止剪枝。
需要注意的是,剪枝过程中选择合适的条件和合理的剪枝策略是很重要的,以确保决策树能够在保持准确性的同时减少过拟合。
14.介绍随机森林(RF)原理和思想
RF(Random Forest)是一种集成学习(Ensemble Learning)方法,由多个决策树构成的分类器或回归器组成。它的原理和思想主要涉及以下几个方面:
1. 随机抽样:RF使用自助采样法(Bootstrap Sampling)从原始数据集中有放回地随机抽取样本,生成不同的训练子集,用于训练每棵决策树。这样可以使得每棵树都有略微不同的训练数据,增加模型的多样性。
2. 随机特征选择:在训练每棵决策树的过程中,并不是使用全部的特征进行划分,而是随机选择一部分特征。这样可以避免某些特征在所有树中都起到主导作用,增加模型的多样性和稳定性。
3. 决策树集成:RF中的每棵决策树都是基于不同的训练子集和随机特征选择生成的。通过集成所有的决策树,RF能够将每棵树的预测结果结合起来,从而得到更准确、鲁棒性更强的预测。
4. 投票表决:在RF中,当进行分类任务时,将每棵决策树的分类结果进行投票表决,选择获得最多投票的类别作为最终的分类结果。对于回归任务,将每棵决策树的预测结果取平均值作为最终的回归结果。
RF的优点包括:
- 对于大规模数据集和高维特征,RF能够有效处理。
- RF能够自动处理缺失值和异常值。
- RF不容易过拟合,模型具有较好的泛化能力。
- RF可以提供特征的重要性评估,可以用于特征选择。
需要注意的是,RF的训练过程可能比较耗时,由于生成了多个决策树,模型的存储空间较大。此外,RF对于噪声较大的数据,可能会导致模型的性能下降。因此,在使用RF时需要注意参数的选择和调优。
15.RF是如何处理缺失值?
在随机森林(RF)中,处理缺失值的方法主要有以下两种:
1. 不处理缺失值:RF可以直接处理包含缺失值的数据。在构建每棵决策树时,当需要根据某个特征进行划分时,如果该样本在该特征上有缺失值,RF会将该样本同时考虑在左子树和右子树中,保持了样本在划分过程中的信息。这种方式有助于保持模型的鲁棒性,但可能会引入偏差。
2. 使用其他特征进行推断填充:另一种处理缺失值的方式是使用其他特征值对缺失值进行推断填充。在训练阶段,可以使用其他特征的平均值、中位数、众数等统计量或一些更复杂的算法来填充缺失值。在预测阶段,也可以使用相同的方法来填充缺失值。这种方式可以减少缺失值对模型的影响,但可能会引入噪声。
值得注意的是,选择哪种方法处理缺失值应根据具体情况进行权衡。如果数据中缺失值的比例较高,并且缺失值本身可能包含有信息,那么不处理缺失值可能是更好的选择。如果缺失值的比例较低,处理缺失值可能有助于提高模型的性能。此外,对于某些特定问题,也可以根据领域知识或专家经验来选择最适合的处理方法。
16.RF如何衡量特征重要度?
在随机森林(RF)中,特征重要度是衡量每个特征对模型性能的贡献程度的一种指标。常用的衡量特征重要度的方法有两种:
1. 基尼重要度(Gini Importance):基尼重要度是通过计算每个特征在每个决策树中的相对重要性,并求平均值来得到的。在每棵决策树的划分过程中,特征的基尼指数(Gini Index)用于衡量不确定性的减少程度。基尼重要度是根据特征在所有决策树中使用的次数以及特征的划分准则的基尼指数来计算的。特征使用次数越多,并且每次划分能够显著地减少不确定性,那么该特征的基尼重要度就越高。
2. 平均不纯度减少(Mean Decrease Impurity):平均不纯度减少是通过计算每个特征在每个决策树中划分所带来的平均不纯度减少量来得到的。在每棵决策树的划分过程中,特征的划分准则(如基尼指数或信息增益)会减少数据的不纯度。平均不纯度减少衡量的是在所有决策树中,每个特征的划分对不纯度的平均减少程度。特征的平均不纯度减少越高,说明该特征对于划分数据的重要性越大。
这两种方法都是基于决策树的特性来衡量特征的重要度。使用这些方法可以为特征提供一个相对的重要度排序,进而帮助我们了解哪些特征对于模型的预测能力更为关键。需要注意的是,由于RF是一种集成方法,特征重要度的计算相对准确,但在某些情况下也可能受到数据的噪声或决策树数量的影响。因此,在使用特征重要度进行特征选择时,需要综合考虑其他因素,如数据质量和特征的实际意义。
17.RF“随机”主要体现在哪里?
1. 随机抽样(Bootstrap Sampling):RF使用自助采样法,从原始数据集中有放回地随机抽取样本,生成不同的训练子集。这意味着每个训练子集都是基于原始数据集的随机采样得到的,样本的选择是随机的。这样可以增加模型的多样性,减少过拟合的风险。
2. 随机特征选择:在训练每棵决策树的过程中,并不是使用全部的特征进行划分,而是随机选择一部分特征。具体来说,每次分裂节点时,RF会从所有特征中随机选择一定数量的特征进行评估,并选择其中最佳的特征来进行划分。这样可以避免某些特征在所有树中都起到主导作用,增加模型的多样性和稳定性。
3. 随机森林中决策树的生成过程:每棵决策树的生成过程都是在随机性的基础上进行的。通过随机抽样和随机特征选择,使得每棵决策树都有略微不同的训练数据和特征,即每棵决策树是在随机化的条件下生成的。这样可以使得每棵树都有不同的观察角度和随机误差,最终通过集成来得到更准确、鲁棒性更强的预测。
"随机"在随机森林中的使用是为了增加模型的多样性,提高模型的泛化能力,减少过拟合的风险,并且使得模型能够适应各种不同的数据分布和特征组合。
18.RF有哪些优点和局限性?
RF(Random Forest)具有如下优点:
1. 高准确性:RF通过集成多棵决策树的结果,可以获得更准确、稳定的预测结果。相比于单棵决策树,RF可以减少过拟合问题,提高模型的泛化能力。
2. 鲁棒性:RF对于噪声数据和缺失值具有较好的鲁棒性。在构建每棵决策树时,RF通过随机抽样和随机特征选择,能够有效降低特定样本或特征对模型的影响。
3. 可解释性:RF能够提供特征的重要性评估,通过衡量每个特征在决策树中的使用频率和划分的质量,可以得到特征在模型中的相对重要性。这对于特征选择、特征工程和模型理解等方面有很大帮助。
4. 处理高维数据和大规模数据:RF对于高维特征和大规模数据集具有较好的适应性。在构建每棵决策树时,RF可通过随机特征选择和随机抽样的方式,减轻了对计算资源的要求。
然而,RF也存在一些局限性:
1. 训练时间和存储空间:由于RF需要构建多棵决策树,并且每棵树的训练都相对独立,因此训练时间相对较长。此外,RF需要存储每棵决策树的信息,导致模型的存储空间较大。
2. 参数调整:RF中的一些参数需要进行调优,如决策树的数量、最大树深度和随机特征选择的数量等。不同的数据集和问题可能需要不同的参数设置,需要一定的经验和实践。
3. 对噪声数据的敏感性:虽然RF对于噪声数据具有一定的鲁棒性,但对于噪声比较大的数据,可能会导致模型性能下降。
4. 随机性带来的不确定性:RF中的随机性因素,如随机抽样和随机特征选择,使得模型的结果具有一定的不确定性。这对于模型的解释和可重复性可能带来一些挑战。
19.为什么多个弱分类器组合效果会比单个要好?如何组合弱分类器可以获得更好的结果?原因是什么?
主要原因是因为集成学习可以通过对多个分类器的综合意见来减少分类误差。每个弱分类器可能只能对某些样本做出正确的预测,但是通过组合多个弱分类器,可以综合他们的决策,从而提高整体的分类性能。同时,集成学习还可以通过对不同的弱分类器进行权重分配,以提高最终的分类性能。此外,集成学习还可以通过引入随机性来增强分类器的多样性,从而进一步提高整体的分类性能。因此,多个弱分类器的组合可以利用集体的智慧和多样性,进一步提高分类的准确性。
在集成学习中,可以使用多种方法来组合弱分类器以获得更好的结果。以下是常见的几种方法:
1. 投票法(Voting):对于分类问题,可以让弱分类器进行投票,最后选择得票最多的类别作为最终的预测结果。这种方法适用于多数表决可靠的场景。
2. 加权投票法(Weighted Voting):为每个弱分类器分配一个权重,根据其预测结果的可信度进行投票。权重可以根据弱分类器的准确性来确定,准确性较高的分类器可以被赋予更高的权重。
3. 平均法(Averaging):对于回归问题,可以将多个弱分类器的预测结果取平均作为最终的预测结果。这种方法可以减少预测的方差,提高整体的稳定性。
4. 堆叠法(Stacking):将多个弱分类器的预测结果作为输入,训练一个元分类器来得到最终的预测结果。元分类器可以是其他机器学习算法,如逻辑回归、支持向量机等。堆叠法可以利用不同弱分类器的优点,进一步提高整体的分类性能。
以上方法的原理是利用多个弱分类器的决策来减少分类误差,通过集体的智慧和多样性来获得更好的结果。不同的方法适用于不同的情况和问题,选择合适的组合方法可以根据具体的学习任务和数据特征进行调整。
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!