DETR 目标检测
2023-12-14 17:31:20
DETR 目标检测
根据DETR官方源代码,写一个打框可可视化脚本(适用于NWPU-VHR-10数据集)
注意:
1、如果是自己的数据集,修改num_classes参数值为自己的数据种类类别 + 1
2、定义CLASSES和COLORS,每个类别对应一个颜色即可。
3、修改代码中的路径为自己的路径
可参考文章
https://blog.csdn.net/qq_45836365/article/details/128252220
import glob
import math
import argparse
import numpy as np
from models.detr import DETR
from models.backbone import Backbone, build_backbone
from models.transformer import build_transformer
from PIL import Image
import cv2
import requests
import matplotlib.pyplot as plt
import torch
from torch import nn
from torchvision.models import resnet50
import torchvision.transforms as T
import torchvision.models as models
torch.set_grad_enabled(False)
import os
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--lr_drop', default=200, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float, help='gradient clipping max norm')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained") # * Backbone
parser.add_argument('--backbone', default='resnet50', type=str, help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int, help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int, help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float, help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=100, type=int, help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# * Segmentation
parser.add_argument('--masks', action='store_true', help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)") # * Matcher
parser.add_argument('--set_cost_class', default=1, type=float, help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float, help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost") # * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
# dataset parameters
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str)
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
CLASSES = ['airplane', 'ship', 'storage tank', 'baseball diamond', 'tennis court', 'basketball court',
'ground track field', 'harbor', 'bridge', 'vehicle']
COLORS = [(120, 120, 120), (180, 120, 120), (6, 230, 230), (80, 50, 50),
(4, 200, 3), (120, 120, 80), (140, 140, 140), (204, 5, 255),
(230, 230, 230), (4, 250, 7),
]
transform_input = T.Compose([
T.Resize(800),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
def plot_results(pil_img, prob, boxes, save_path):
lw = max(round(sum(pil_img.shape) / 2 * 0.003), 2)
tf = max(lw - 1, 1)
colors = COLORS
for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
c1 = p.argmax()
text = f'{CLASSES[c1 - 1]}:{p[c1]:0.2f}'
cv2.rectangle(pil_img, (int(xmin), int(ymin)), (int(xmax), int(ymax)), colors[c1 - 1], thickness=lw,
lineType=cv2.LINE_AA)
if text:
tf = max(lw - 1, 1)
w, h = cv2.getTextSize(text, 0, fontScale=lw / 3, thickness=tf)[0]
cv2.rectangle(pil_img, (int(xmin), int(ymin)), (int(xmin) + w, int(ymin) - h - 3), colors[c1 - 1], -1,
cv2.LINE_AA)
cv2.putText(pil_img, text, (int(xmin), int(ymin) - 2), 0, lw / 3, (255, 255, 255), thickness=tf,
lineType=cv2.LINE_AA)
Image.fromarray(ori_img).save(save_path)
parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
backbone = build_backbone(args)
transform = build_transformer(args)
model = DETR(backbone=backbone, transformer=transform, num_classes=11, num_queries=100)
model_path = '/home/admin1/pywork/xuebing_pywork/detr-main/outs/checkpoint0299.pth' # 保存的预训练好的模型pth文件,用于验证
model_data = torch.load(model_path)['model']
model.load_state_dict(model_data)
model.eval()
paths = os.listdir('/home/admin1/pywork/xuebing_pywork/mmdetection-main/data/coco/val2017') # 待验证的图片路径
for path in paths:
if os.path.splitext(path)[1] == ".png":
im = cv2.imread(path)
im = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))
else:
im = Image.open('/home/admin1/pywork/xuebing_pywork/mmdetection-main/data/coco/val2017' + '/' + path)
# mean-std normalize the input image (batch-size: 1)
img = transform_input(im).unsqueeze(0)
# propagate through the model
outputs = model(img)
# keep only predictions with 0.9+ confidence
probas = outputs['pred_logits'].softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > 0.9
# convert boxes from [0; 1] to image scales
bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], im.size)
# 保存验证结果地址
img_save_path = '/home/admin1/pywork/xuebing_pywork/detr-main/infer_results/' + \
os.path.splitext(os.path.split(path)[1])[0] + '.jpg'
ori_img = np.array(im)
plot_results(ori_img, probas[keep], bboxes_scaled, img_save_path)
文章来源:https://blog.csdn.net/MZYYZT/article/details/134872962
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!