微软技术领域内容榜~加油共勉~
这次的文章上了微软技术领域内容榜17名,继续加油,总结学习过程的笔记与点滴感悟,与君共勉!
- 博客文章传送门:【Python】—— 文本分析
相关知识
? ?? ?当涉及到文本数据处理和可视化的任务时,我们可以通过了解下面的知识和使用Python的一些主要库和工具来完成这些任务。
1. 文本数据处理
? ?? ?包括读取文本文件、对文本进行分词、去除停用词等基本文本处理步骤。
- 读取文本文件:
- 在Python中,我们使用open函数打开文件,指定文件名、打开模式(这里是’r’表示读取)、以及字符编码(通常是’utf-8’)。
with open('filename.txt', 'r', encoding='utf-8') as file:
text_data = file.read()
- 分词和去除停用词:
- 使用Natural Language Toolkit(NLTK)库进行分词和去除停用词。分词是将文本拆分成单词的过程,而停用词是指那些在文本中频繁出现但没有实际含义的词汇,可以通过NLTK提供的停用词列表进行去除。
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
stop_words = set(stopwords.words('english'))
words = word_tokenize(text_data)
filtered_words = [word.lower() for word in words if word.isalpha() and word.lower() not in stop_words]
2. 文本可视化
? ?? ?通过词云制作实现文本数据的可视化呈现。
- 使用wordcloud生成词云图:
- WordCloud是一个用于生成词云图的库,它根据文本中单词的频率生成具有可视化效果的图形。在示例代码中,我们通过WordCloud生成词云图,并使用matplotlib展示。
from wordcloud import WordCloud
import matplotlib.pyplot as plt
wordcloud = WordCloud().generate(' '.join(filtered_words))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()
使用 wordcloud
库生成词云图的过程主要分为以下几个步骤:
-
安装
wordcloud
库:
? ?? ?在命令行或终端中运行以下命令安装wordcloud
:pip install wordcloud
-
导入库:
from wordcloud import WordCloud import matplotlib.pyplot as plt
-
准备文本数据:
? ?? ?获取需要生成词云的文本数据,确保文本数据是字符串形式。 -
创建
WordCloud
对象并生成词云:wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text_data)
? ?? ?在这里,我们创建了一个
WordCloud
对象,指定了词云的宽度、高度和背景颜色。可以根据需要调整其他参数,比如字体、最大词汇量等。 -
可选步骤 - 自定义词云形状:
? ?? ?如果你想要词云的形状为特定图形,可以使用自定义形状的图片。首先,你需要准备一张形状的图片,然后使用WordCloud
的mask
参数指定该图片。from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator from PIL import Image # 读取形状图片 mask = np.array(Image.open("your_shape_image.png")) # 使用形状图片生成词云 wordcloud = WordCloud(mask=mask, background_color="white").generate(text_data)
-
显示或保存词云图:
plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") # 显示词云图 plt.show() # 或保存词云图 wordcloud.to_file("wordcloud_output.png")
? ?? ?使用
plt.show()
可以在运行脚本时显示词云图,而to_file
方法可以保存词云图为图片文件。
? ?? ?总体来说,使用wordcloud
库生成词云图是一个相对简单的过程,主要涉及创建WordCloud
对象并调整相关参数,然后通过imshow
方法显示或通过to_file
方法保存生成的词云图。
3. Python编程
? ?? ?可看Python专栏
? ?? ?要求通过Python实现上述功能,因此需要熟悉Python编程语言及其相关库和模块。
4. 词频统计
? ?? ?对文本中各个词汇的出现频率进行统计分析。
- 使用Counter进行词频统计:
- Counter是Python的一个内置库,用于统计可哈希对象的出现次数。在这里,我们使用Counter来统计文本中单词的出现频率。
from collections import Counter
word_freq = Counter(filtered_words)
5. 人名提取
? ?? ?从文本中提取人物名称,这可能需要使用一些自然语言处理(NLP)的技术或者规则来实现。
- 使用spaCy进行实体识别:
- spaCy是一个自然语言处理库,它提供了实体识别功能,可以用于从文本中提取人名等实体。在示例代码中,我们加载了英文的spaCy模型,并使用它来获取文本中的人物名称。
import spacy
nlp = spacy.load('en_core_web_sm')
doc = nlp(text_data)
person_names = [ent.text for ent in doc.ents if ent.label_ == 'PERSON']
6. 自然段划分
? ?? ?将文本划分成自然段,可能涉及到对文本的分段或分句处理。
- 使用正则表达式进行自然段划分:
- 正则表达式是一种强大的文本匹配工具,可以根据特定的模式来划分文本。在这里,我们使用\n\n来划分自然段,表示两个换行符之间的文本。
import re
paragraphs = re.split('\n\n', text_data)
7. 人物出现频率分布分析
? ?? ?分析文本中人物出现的频率分布情况,可以通过统计每个人物在文本中出现的次数来实现。
- 统计人物出现频率:
- 通过使用Counter,我们可以轻松地统计从文本中提取的人物名称的出现频率,从而进行人物出现频率分布分析。
character_freq = Counter(person_names)
8. 词云生成
? ?? ?使用wordcloud模块生成词云图,这需要将词频等信息传递给词云模块,并对生成的图像进行一定的定制。
综合来看,这涉及到文本处理、数据统计、可视化和一定的自然语言处理方面的知识和技能。
- 定制词云图:
- 在生成词云图时,可以通过调整WordCloud的参数来定制图形的外观,包括图像的大小、背景颜色等。示例代码中展示了如何设置词云的宽度、高度和背景颜色。
wordcloud = WordCloud(width=800, height=400, background_color='white').generate_from_frequencies(word_freq)
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!