YOLOv8 上手体验
2023-12-30 17:11:46
🥪环境搭建
?注意
Python>=3.8
PyTorch>=1.8
💡CUDA
PyTorch
安装PyTorch 命令获取 👈,根据自己的情况选好后复制安装命令
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
💡ultralytics
pip install ultralytics
🦪食用
💡cmd
cmd 先到需要的目录再 输入命令,它会保存到cmd当前所在目录:
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
预测结果存放在:\runs\detect\predict
💡Python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="coco128.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
path = model.export(format="onnx") # export the model to ONNX format
🍲导出官方模型到本地
cmd 先到需要的目录再 输入命令,它会保存到cmd当前所在目录:
yolo export model=yolov8n.pt format=torchscript
文章来源:https://blog.csdn.net/qq_26318597/article/details/135271999
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!