树莓派,opencv,Picamera2利用舵机云台追踪人脸
2023-12-15 11:33:26
一、需要准备的硬件
- Raspiberry 4b
- 两个SG90 180度舵机(注意舵机的角度,最好是180度且带限位的,切勿选360度舵机)
- 二自由度舵机云台(如下图)
- Raspiberry CSI 摄像头
组装后的效果:
二、项目目标
追踪人脸:
当人脸移动时,摄像头通过控制两个伺服电机(分别是偏航和俯仰)把该人脸放到视界的中心位置
(备注:没有采用PID控制伺服电机)
三、具体步骤
3.1 下载用于人脸识别的级联分类器
下载级联分类器“haarcascade_frontalface_default.xml”,下载地址:haarcascade_frontalface_default.xml
下载完成后将其与后面的所有文件放到同一目录中。
3.2人脸追踪代码
- 创建文件“face_tracking_noPID.py” ,代码如下:
import cv2
from picamera2 import Picamera2
import time
import numpy as np
from servo import Servo
from time import sleep
picam2 = Picamera2()
#偏航伺服电机连接上GPIO19脚,俯仰伺服电机信号线连接到GPIO16脚上
pan=Servo(pin=19)
tilt=Servo(pin=16)
panAngle=0
tiltAngle=0
pan.set_angle(panAngle)
tilt.set_angle(tiltAngle)
#初始化pi camera
dispW=1280
dispH=720
picam2.preview_configuration.main.size = (dispW,dispH)
picam2.preview_configuration.main.format = "RGB888"
picam2.preview_configuration.controls.FrameRate=30
picam2.preview_configuration.align()
picam2.configure("preview")
picam2.start()
fps=0
pos=(30,60)
font=cv2.FONT_HERSHEY_SIMPLEX
height=1.5
weight=3
myColor=(0,0,255)
while True:
tStart=time.time()
#获取取摄像头图片
frame= picam2.capture_array()
frame=cv2.flip(frame,1)
gray=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
#设置人脸识别参数
face_cascade=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
rects = face_cascade.detectMultiScale(gray, scaleFactor=1.05,
minNeighbors=9, minSize=(30, 30),
flags=cv2.CASCADE_SCALE_IMAGE)
if len(rects) > 0:
# 获取矩形的参数
# x,y为左上角点坐标,w,h为宽度和高度
# 计算图像中心
(x, y, w, h) = rects[0]
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),3)
errorX=dispW/2-(x+w/2)
if errorX>30:
panAngle=panAngle-3 #调整此代码中的数字可以提高追踪速度
if panAngle<-90:
panAngle=-90
pan.set_angle(panAngle)
if errorX<-30:
panAngle=panAngle+3 #调整此代码中的数字可以提高追踪速度
if panAngle>90:
panAngle=90
pan.set_angle(panAngle)
#俯仰电机纠偏Y轴方向上的偏差,大于30度,俯仰角度减小,小于-30度,俯仰角度增加
errorY=dispH/2-(y+h/2)
if errorY>30:
tiltAngle=tiltAngle-3 #调整此代码中的数字可以提高追踪速度
if tiltAngle<-90:
tiltAngle=-90
tilt.set_angle(tiltAngle)
if errorY<-30:
tiltAngle=tiltAngle+3 #调整此代码中的数字可以提高追踪速度
if tiltAngle>90:
tiltAngle=90
tilt.set_angle(tiltAngle)
cv2.imshow('Camera',frame)
#按q键退出,释放伺服电机和摄像头
if cv2.waitKey(1)==ord('q'):
pan.stop()
tilt.stop()
picam2.stop()
print('stop')
sleep(1)
break
tEnd=time.time()
loopTime=tEnd-tStart
fps=.9*fps + .1*(1/loopTime)
cv2.destroyAllWindows()
- 上述代码中的from servo import Servo导入servo,这个库是没有的,我们要手动创建这个库,在object_tracking.py所在的目录下新建servo.py文件,复制下面的代码到文件中
#!/usr/bin/env python3
import pigpio
from time import sleep
# Start the pigpiod daemon
import subprocess
result = None
status = 1
for x in range(3):
p = subprocess.Popen('sudo pigpiod', shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
result = p.stdout.read().decode('utf-8')
status = p.poll()
if status == 0:
break
sleep(0.2)
if status != 0:
print(status, result)
'''
> Use the DMA PWM of the pigpio library to drive the servo
> Map the servo angle (0 ~ 180 degree) to (-90 ~ 90 degree)
'''
class Servo():
MAX_PW = 1250 # 0.5/20*100
MIN_PW = 250 # 2.5/20*100
_freq = 50 # 50 Hz, 20ms
def __init__(self, pin, min_angle=-90, max_angle=90):
self.pi = pigpio.pi()
self.pin = pin
self.pi.set_PWM_frequency(self.pin, self._freq)
self.pi.set_PWM_range(self.pin, 10000)
self.angle = 0
self.max_angle = max_angle
self.min_angle = min_angle
self.pi.set_PWM_dutycycle(self.pin, 0)
def set_angle(self, angle):
if angle > self.max_angle:
angle = self.max_angle
elif angle < self.min_angle:
angle = self.min_angle
self.angle = angle
duty = self.map(angle, -90, 90, 250, 1250)
self.pi.set_PWM_dutycycle(self.pin, duty)
def get_angle(self):
return self.angle
def stop(self):
self.pi.set_PWM_dutycycle(self.pin, 0)
self.pi.stop()
# will be called automatically when the object is deleted
# def __del__(self):
# pass
def map(self, x, in_min, in_max, out_min, out_max):
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min
if __name__ =='__main__':
from vilib import Vilib
# Vilib.camera_start(vflip=True,hflip=True)
# Vilib.display(local=True,web=True)
pan = Servo(pin=13, max_angle=90, min_angle=-90)
tilt = Servo(pin=12, max_angle=30, min_angle=-90)
panAngle = 0
tiltAngle = 0
pan.set_angle(panAngle)
tilt.set_angle(tiltAngle)
sleep(1)
while True:
for angle in range(0, 90, 1):
pan.set_angle(angle)
tilt.set_angle(angle)
sleep(.01)
sleep(.5)
for angle in range(90, -90, -1):
pan.set_angle(angle)
tilt.set_angle(angle)
sleep(.01)
sleep(.5)
for angle in range(-90, 0, 1):
pan.set_angle(angle)
tilt.set_angle(angle)
sleep(.01)
sleep(.5)
- 在文件目录中输入
python face_tracking_noPID.py
,即可实现对人脸对象自动追踪
文章来源:https://blog.csdn.net/idfengming/article/details/134928237
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!