【Flink-Kafka-To-Mysql】使用 Flink 实现 Kafka 数据写入 Mysql(根据对应操作类型进行增、删、改操作)
2023-12-25 17:37:07
【Flink-Kafka-To-Mysql】使用 Flink 实现 Kafka 数据写入 Mysql(根据对应操作类型进行增、删、改操作)
需求描述:
1、数据从 Kafka 写入 Mysql。
2、相关配置存放于 Mysql 中,通过 Mysql 进行动态读取。
3、此案例中的 Kafka 是进行了 Kerberos 安全认证的,如果不需要自行修改。
4、Kafka 数据为 Json 格式,获取到的数据根据操作类型字段进行增删改操作。
5、读取时使用自定义 Source,写入时使用自定义 Sink。
6、消费 Kafka 数据时自定义反序列化。
1)导入依赖
这里的依赖比较冗余,大家可以根据各自需求做删除或保留。
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>gaei.cn.x5l</groupId>
<artifactId>x8vbusiness</artifactId>
<version>1.0.0</version>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<target.java.version>1.8</target.java.version>
<maven.compiler.source>${target.java.version}</maven.compiler.source>
<maven.compiler.target>${target.java.version}</maven.compiler.target>
<scala.binary.version>2.12</scala.binary.version>
<scala.version>2.12.10</scala.version>
<flink.version>1.14.0</flink.version>
<log4j.version>2.17.2</log4j.version>
<hadoop.version>3.1.2</hadoop.version>
<hive.version>3.1.2</hive.version>
<mongo.driver.version>3.12.6</mongo.driver.version>
<mongo.driver.core.version>4.3.1</mongo.driver.core.version>
</properties>
<dependencies>
<dependency>
<groupId>com.ververica</groupId>
<artifactId>flink-connector-mysql-cdc</artifactId>
<version>2.3.0</version>
<!-- <exclusions>-->
<!-- <exclusion>-->
<!-- <groupId>mysql</groupId>-->
<!-- <artifactId>mysql-connector-java</artifactId>-->
<!-- </exclusion>-->
<!-- </exclusions>-->
</dependency>
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>2.9.0</version>
</dependency>
<!-- 基础依赖 开始-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<!-- 基础依赖 结束-->
<!-- TABLE 开始-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-api-java-bridge_${scala.binary.version}</artifactId>
<version>1.14.0</version>
<scope>provided</scope>
</dependency>
<!-- 使用 hive sql时注销,其他时候可以放开 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-common</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-cep_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- TABLE 结束-->
<!-- sql 开始-->
<!-- sql解析 开始 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-json</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-csv</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<!-- sql解析 结束 -->
<!-- sql连接 kafka -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-sql-connector-kafka_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- sql 结束-->
<!-- 检查点 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-state-processor-api_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>commons-lang</groupId>
<artifactId>commons-lang</artifactId>
<version>2.5</version>
<scope>compile</scope>
</dependency>
<!-- 本地监控任务 开始 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-runtime-web_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<!-- 本地监控任务 结束 -->
<!-- DataStream 开始 -->
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-slf4j-impl</artifactId>
<version>${log4j.version}</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-api</artifactId>
<version>${log4j.version}</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>${log4j.version}</version>
<scope>runtime</scope>
</dependency>
<!-- hdfs -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.3.1</version>
<exclusions>
<exclusion>
<groupId>org.apache.avro</groupId>
<artifactId>avro</artifactId>
</exclusion>
</exclusions>
</dependency>
<!-- 重点,容易被忽略的jar -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-auth</artifactId>
<version>${hadoop.version}</version>
</dependency>
<!-- rocksdb_2 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-statebackend-rocksdb_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<!-- 其他 -->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.1.23</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.16.18</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.jyaml</groupId>
<artifactId>jyaml</artifactId>
<version>1.3</version>
</dependency>
<!-- TABLE 开始-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_${scala.binary.version}</artifactId>
<!-- <version>${flink.version}</version>-->
<version>1.13.5</version>
<scope>provided</scope>
</dependency>
<!-- TABLE 结束-->
<dependency>
<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
<version>2.8.3</version>
</dependency>
<dependency>
<groupId>com.ververica</groupId>
<artifactId>flink-connector-mongodb-cdc</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<!-- <version>5.1.44</version>-->
<version>8.0.27</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid</artifactId>
<version>1.2.8</version>
</dependency>
<dependency>
<groupId>org.mongodb</groupId>
<artifactId>bson</artifactId>
<version>${mongo.driver.core.version}</version>
</dependency>
<dependency>
<groupId>org.mongodb</groupId>
<artifactId>mongodb-driver-core</artifactId>
<version>${mongo.driver.core.version}</version>
</dependency>
<!-- 使用 mongodb-driver 重新打包成的 custom-mongo-core -->
<dependency>
<groupId>org.mongodb</groupId>
<artifactId>mongodb-driver</artifactId>
<version>3.12.6</version>
</dependency>
</dependencies>
<build>
<plugins>
<!-- Java Compiler -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>
<source>${target.java.version}</source>
<target>${target.java.version}</target>
</configuration>
</plugin>
<!-- We use the maven-shade plugin to create a fat jar that contains all necessary dependencies. -->
<!-- Change the value of <mainClass>...</mainClass> if your program entry point changes. -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.0.0</version>
<executions>
<!-- Run shade goal on package phase -->
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<artifactSet>
<excludes>
<exclude>org.apache.flink:force-shading</exclude>
<exclude>com.google.code.findbugs:jsr305</exclude>
<exclude>org.slf4j:*</exclude>
<exclude>org.apache.logging.log4j:*</exclude>
<exclude>org.apache.flink:flink-runtime-web_2.11</exclude>
</excludes>
</artifactSet>
<filters>
<filter>
<!-- Do not copy the signatures in the META-INF folder.
Otherwise, this might cause SecurityExceptions when using the JAR. -->
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>com.owp.flink.kafka.KafkaSourceDemo</mainClass>
</transformer>
<!-- flink sql 需要 -->
<!-- The service transformer is needed to merge META-INF/services files -->
<transformer
implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
<!-- ... -->
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
<pluginManagement>
<plugins>
<!-- This improves the out-of-the-box experience in Eclipse by resolving some warnings. -->
<plugin>
<groupId>org.eclipse.m2e</groupId>
<artifactId>lifecycle-mapping</artifactId>
<version>1.0.0</version>
<configuration>
<lifecycleMappingMetadata>
<pluginExecutions>
<pluginExecution>
<pluginExecutionFilter>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<versionRange>[3.0.0,)</versionRange>
<goals>
<goal>shade</goal>
</goals>
</pluginExecutionFilter>
<action>
<ignore/>
</action>
</pluginExecution>
<pluginExecution>
<pluginExecutionFilter>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<versionRange>[3.1,)</versionRange>
<goals>
<goal>testCompile</goal>
<goal>compile</goal>
</goals>
</pluginExecutionFilter>
<action>
<ignore/>
</action>
</pluginExecution>
</pluginExecutions>
</lifecycleMappingMetadata>
</configuration>
</plugin>
</plugins>
</pluginManagement>
</build>
</project>
2)resources
2.1.appconfig.yml
mysql.url: "jdbc:mysql://1.1.1.1:3306/test?useSSL=false"
mysql.username: "test"
mysql.password: "123456"
mysql.driver: "com.mysql.jdbc.Driver"
2.2.application.properties
url=mongodb://test:test123456@10.1.1.1:34516/?authSource=admin
#database=diagnosis
#collection=diagnosisEntiry
maxConnectionIdleTime=1000000
batchSize=1
# flink
checkpoint.interval=300000
checkpoint.minPauseBetweenCheckpoints=10000
checkpoint.checkpointTimeout=400000
maxConcurrentCheckpoints=1
restartInterval=120
restartStrategy=3
checkpointDataUri=hdfs://nameserver/user/flink/rocksdbcheckpoint_mongo
mysql.url=jdbc:mysql://1.1.1.1:3306/test?useSSL=false
mysql.username=test
mysql.password=123456
#envType=PRE
envType=PRD
# mysql druid 连接池生产环境连接池配置
druid.driverClassName=com.mysql.jdbc.Driver
#生产
druid.url=jdbc:mysql://1.1.1.1:3306/test
druid.username=test
druid.password=123456
# 初始化连接数
druid.initialSize=1
# 最大连接数
druid.maxActive=5
# 最大等待时间
druid.maxWait=3000
2.3.log4j.properties
log4j.rootLogger=info, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n
2.4.log4j2.xml
<?xml version="1.0" encoding="UTF-8"?>
<configuration monitorInterval="5">
<Properties>
<property name="LOG_PATTERN" value="%date{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n" />
<property name="LOG_LEVEL" value="ERROR" />
</Properties>
<appenders>
<console name="console" target="SYSTEM_OUT">
<PatternLayout pattern="${LOG_PATTERN}"/>
<ThresholdFilter level="${LOG_LEVEL}" onMatch="ACCEPT" onMismatch="DENY"/>
</console>
<File name="log" fileName="tmp/log/job.log" append="false">
<PatternLayout pattern="%d{HH:mm:ss.SSS} %-5level %class{36} %L %M - %msg%xEx%n"/>
</File>
</appenders>
<loggers>
<root level="${LOG_LEVEL}">
<appender-ref ref="console"/>
<appender-ref ref="log"/>
</root>
</loggers>
</configuration>
3)util
3.1.KafkaMysqlUtils
public class KafkaUtils {
public static FlinkKafkaConsumer<ConsumerRecord<String, String>> getKafkaConsumer(List<String> topic) throws IOException {
Properties prop1 = confFromYaml();
//认证环境
String envType = prop1.getProperty("envType");
Properties prop = new Properties();
System.setProperty("java.security.krb5.conf", "/opt/conf/krb5.conf");
prop.put("security.protocol", "SASL_PLAINTEXT");
prop.put("sasl.jaas.config", "com.sun.security.auth.module.Krb5LoginModule required "
+ "useTicketCache=false "
+ "serviceName=\"" + "kafka" + "\" "
+ "useKeyTab=true "
+ "keyTab=\"" + "/opt/conf/test.keytab" + "\" "
+ "principal=\"" + getKafkaKerberos(envType).get("principal") + "\";");
prop.put("bootstrap.servers", getKafkaKerberos(envType).get("bootstrap.servers"));
prop.put("group.id", "Kafka2Mysql_test");
prop.put("auto.offset.reset", "earliest");
prop.put("enable.auto.commit", "false");
prop.put("max.poll.interval.ms", "60000");
prop.put("max.poll.records", "3000");
prop.put("session.timeout.ms", "600000");
// List<String> topics = Stream.of(prop.getProperty("topics").split(",", -1))
// .collect(Collectors.toList());
prop.put("key.serializer", "org.apache.flink.kafka.shaded.org.apache.kafka.common.serialization.ByteArrayDeserializer");
prop.put("value.serializer", "org.apache.flink.kafka.shaded.org.apache.kafka.common.serialization.ByteArrayDeserializer");
FlinkKafkaConsumer<ConsumerRecord<String, String>> consumer = new FlinkKafkaConsumer<ConsumerRecord<String, String>>(topic, new CustomDeSerializationSchema(), prop);
consumer.setStartFromGroupOffsets();
consumer.setCommitOffsetsOnCheckpoints(true);
return consumer;
}
public static void main(String[] args) throws Exception {
Properties druidConf = KafkaUtils.getDruidConf();
if (druidConf == null) {
throw new RuntimeException("缺少druid相关配置信息,请检查");
}
DataSource dataSource = DruidDataSourceFactory.createDataSource(druidConf);
Connection connection = dataSource.getConnection();
PreparedStatement showDatabases = connection.prepareStatement("\n" +
"select count(*) from tab_factory");
ResultSet resultSet = showDatabases.executeQuery();
while (resultSet.next()) {
String string = resultSet.getString(1);
System.out.println(string);
}
resultSet.close();
showDatabases.close();
connection.close();
}
public static Properties getDruidConf() {
try {
Properties prop = confFromYaml();
String driverClassName = prop.get("druid.driverClassName").toString();
String url = prop.get("druid.url").toString();
String username = prop.get("druid.username").toString();
String password = prop.get("druid.password").toString();
String initialSize = prop.get("druid.initialSize").toString();
String maxActive = prop.get("druid.maxActive").toString();
String maxWait = prop.get("druid.maxWait").toString();
Properties p = new Properties();
p.put("driverClassName", driverClassName);
p.put("url", url);
p.put("username", username);
p.put("password", password);
p.put("initialSize", initialSize);
p.put("maxActive", maxActive);
p.put("maxWait", maxWait);
// p.forEach((k,v)-> System.out.println("连接池属性 "+k+"="+v));
return p;
} catch (Exception e) {
e.printStackTrace();
}
return null;
}
// envType PRE PRD
public static Map<String, String> getKafkaKerberos(String envType) {
Map<String, String> map = new HashMap<>();
if ("PRD".equalsIgnoreCase(envType)) {
map.put("principal", "prd@PRD.PRD.COM");
map.put("bootstrap.servers", "kfk01.prd:9092,kfk02.prd:9092,kfk03.prd:9092,kfk04.prd:9092,kfk05.prd:9092,kfk06.prd:9092");
} else if ("PRE".equalsIgnoreCase(envType)) {
map.put("principal", "pre@PRE.PRE.COM");
map.put("bootstrap.servers", "kfk01.pre:9092,kfk02.pre:9092,kfk03.pre:9092");
} /*else if ("TEST".equalsIgnoreCase(envType)) {
map.put("principal","test@TEST.TEST.COM");
map.put("bootstrap.servers","test@TEST.TEST.COM");
} */ else {
System.out.println("没有该" + envType + "环境");
throw new RuntimeException("没有该" + envType + "环境");
}
return map;
}
public static StreamExecutionEnvironment setupFlinkEnv(StreamExecutionEnvironment env) throws IOException {
Properties prop = confFromYaml();
env.enableCheckpointing(Long.valueOf(prop.getProperty("checkpoint.interval")), CheckpointingMode.EXACTLY_ONCE);//这里会造成offset提交的延迟
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(Long.valueOf(prop.getProperty("checkpoint.minPauseBetweenCheckpoints")));
env.getCheckpointConfig().setCheckpointTimeout(Long.valueOf(prop.getProperty("checkpoint.checkpointTimeout")));
env.getCheckpointConfig().setMaxConcurrentCheckpoints(Integer.valueOf(prop.getProperty("maxConcurrentCheckpoints")));
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
// env.getCheckpointConfig().setTolerableCheckpointFailureNumber(5);
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(
Integer.valueOf(prop.getProperty("restartStrategy")), // 尝试重启的次数,不宜过小,分布式任务很容易出问题(正常情况),建议3-5次
Time.of(Integer.valueOf(prop.getProperty("restartInterval")), TimeUnit.SECONDS) // 延时
));
// 设置状态后端存储方式
// env.setStateBackend(new RocksDBStateBackend((String) prop.getProperty("checkPointPath"), true));
// env.setStateBackend(new MemoryStateBackend());
env.setStateBackend(new RocksDBStateBackend(String.valueOf(prop.getProperty("checkpointDataUri")), true));
return env;
}
public static Properties confFromYaml() {
Properties prop = new Properties();
InputStream resourceStream = Thread.currentThread().getContextClassLoader().getResourceAsStream("application.properties");
try {
prop.load(resourceStream);
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
if (resourceStream != null) {
resourceStream.close();
}
} catch (Exception ex) {
ex.printStackTrace();
}
}
return prop;
}
}
3.2.CustomDeSerializationSchema
public class CustomDeSerializationSchema implements KafkaDeserializationSchema<ConsumerRecord<String, String>> {
private static String encoding = "UTF8";
//是否表示l流的最后一条元素,设置为false,表示数据会源源不断的到来
@Override
public boolean isEndOfStream(ConsumerRecord<String, String> nextElement) {
return false;
}
//这里返回一个ConsumerRecord<String,String>类型的数据,除了原数据还包括topic,offset,partition等信息
@Override
public ConsumerRecord<String, String> deserialize(ConsumerRecord<byte[], byte[]> record) throws Exception {
byte[] key = (record.key() == null ? "".getBytes() : record.key());
return new ConsumerRecord<String, String>(
record.topic(),
record.partition(),
record.offset(),
record.timestamp(),
record.timestampType(),
record.checksum(),
record.serializedKeySize(),
record.serializedValueSize(),
/*这里我没有进行空值判断,生产一定记得处理*/
new String(key, encoding),
new String(record.value(), encoding));
}
//指定数据的输入类型
@Override
public TypeInformation<ConsumerRecord<String, String>> getProducedType() {
return TypeInformation.of(new TypeHint<ConsumerRecord<String, String>>() {
});
}
}
4)po
4.1.TableBean
@Data
public class TableBean {
private String database;
private String table;
private String primaryKey;
private TableBean() {
}
public TableBean(String database, String table, String primaryKey) {
this.database = '`' + database + '`';
this.table = '`' + table + '`';
this.primaryKey = primaryKey;
}
}
5)kafkacdc2mysql
5.1.Kafka2MysqlApp
public class Kafka2MysqlApp {
// key 是 topic 名,value是对应数据库表中的主键列名
private static final Map<String, TableBean> map = new HashMap<>();
static {
//表名这里没有进行配置,后面根据实际业务进行配置即可
map.put("mysql_tab1", new TableBean("db1", "", "alarm_id"));
map.put("mysql_tab2", new TableBean("db2", "", "id"));
}
public static void main(String[] args) throws Exception {
ArrayList<String> topicList = new ArrayList<>(map.keySet());
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment().disableOperatorChaining();
KafkaUtils.setupFlinkEnv(env);
RichSinkFunction<ConsumerRecord<String, String>> sinkFunction =
new RichSinkFunction<ConsumerRecord<String, String>>() {
DataSource dataSource = null;
@Override
public void open(Configuration parameters) throws Exception {
initDruidDataSource();
}
private void initDruidDataSource() throws Exception {
Properties druidConf = KafkaUtils.getDruidConf();
if (druidConf == null) {
throw new RuntimeException("缺少druid相关配置信息,请检查");
}
dataSource = DruidDataSourceFactory.createDataSource(druidConf);
}
@Override
public void close() throws Exception {
}
@Override
public void invoke(ConsumerRecord<String, String> record, Context context) throws Exception {
if (dataSource == null) {
throw new RuntimeException("连接池未初始化");
}
String operationType = "";
String keyId = "";
String sql = "";
try (Connection connection = dataSource.getConnection()) {
//定义表名
String table_name = record.topic();
JSONObject jsonObject = JSONObject.parseObject(record.value());
operationType = jsonObject.getString("operationType");
jsonObject.remove("operationType");
String primaryKey = map.get(record.topic()).getPrimaryKey();
String database = map.get(record.topic()).getDatabase();
keyId = jsonObject.getString(primaryKey);
List<String> columns = new ArrayList<>();
List<String> columnValues = new ArrayList<>();
jsonObject.forEach((k, v) -> {
columns.add(k);
columnValues.add(v.toString());
});
if ("INSERT".equals(operationType)) {
try {
sql = "delete from " + database + "." + table_name + " where " + primaryKey + "= ?";
PreparedStatement preparedStatement = connection.prepareStatement(sql);
preparedStatement.setObject(1, keyId);
preparedStatement.executeUpdate();
preparedStatement.close();
} catch (Exception ignore) {
}
StringBuilder sb = new StringBuilder();
sb.append("insert into ").append(database).append(".").append(table_name).append("(");
for (String column : columns) {
sb.append("`").append(column).append("`,");
}
sb.append(") values(");
for (String columnValue : columnValues) {
sb.append("?,");
}
sb.append(")");
//去除最后一个逗号
sql = sb.toString().replace(",)", ")");
PreparedStatement preparedStatement = connection.prepareStatement(sql);
for (int i = 0; i < columnValues.size(); i++) {
preparedStatement.setObject(i + 1, columnValues.get(i));
}
preparedStatement.executeUpdate();
preparedStatement.close();
} else if ("UPDATE".equals(operationType)) {
StringBuilder sb = new StringBuilder();
sb.append("update ").append(database).append(".").append(table_name).append(" set ");
for (String column : columns) {
sb.append("`").append(column).append("`= ?,");
}
String sqlPre = sb.substring(0, sb.length() - 1);
sql = sqlPre + " where " + primaryKey + "='" + keyId + "'";
PreparedStatement preparedStatement = connection.prepareStatement(sql);
for (int i = 0; i < columnValues.size(); i++) {
preparedStatement.setObject(i + 1, columnValues.get(i));
}
preparedStatement.executeUpdate();
preparedStatement.close();
} else if ("DELETE".equals(operationType)) {
sql = "delete from " + database + "." + table_name + " where " + primaryKey + "= ?";
PreparedStatement preparedStatement = connection.prepareStatement(sql);
preparedStatement.setObject(1, keyId);
preparedStatement.executeUpdate();
preparedStatement.close();
}
} catch (Exception e) {
System.out.printf("mysql同步操作(%s)有误,主键是%s,原因是%s,对应topic数据是%s%n", operationType, keyId, e.getMessage(), record);
System.out.println("执行sql语句为 " + sql);
throw new RuntimeException(e);
}
}
};
env.addSource(KafkaUtils.getKafkaConsumer(topicList)).addSink(sinkFunction);
env.execute("kafka2mysql synchronization " + topicList.toString());
}
}
文章来源:https://blog.csdn.net/weixin_53543905/article/details/135201505
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!