C# OpenCvSharp DNN 部署FastestDet

2023-12-15 09:31:40

目录

效果

模型信息

项目

代码

下载


C# OpenCvSharp DNN 部署FastestDet

效果

模型信息

Inputs
-------------------------
name:input.1
tensor:Float[1, 3, 512, 512]
---------------------------------------------------------------

Outputs
-------------------------
name:761
tensor:Float[1024, 85]
---------------------------------------------------------------

项目

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
? ? public partial class frmMain : Form
? ? {
? ? ? ? public frmMain()
? ? ? ? {
? ? ? ? ? ? InitializeComponent();
? ? ? ? }

? ? ? ? string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
? ? ? ? string image_path = "";

? ? ? ? DateTime dt1 = DateTime.Now;
? ? ? ? DateTime dt2 = DateTime.Now;

? ? ? ? float confThreshold;
? ? ? ? float nmsThreshold;
? ? ? ? string modelpath;

? ? ? ? int inpHeight;
? ? ? ? int inpWidth;

? ? ? ? List<string> class_names;
? ? ? ? int num_class;

? ? ? ? Net opencv_net;
? ? ? ? Mat BN_image;

? ? ? ? Mat image;
? ? ? ? Mat result_image;

? ? ? ? private void button1_Click(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? OpenFileDialog ofd = new OpenFileDialog();
? ? ? ? ? ? ofd.Filter = fileFilter;
? ? ? ? ? ? if (ofd.ShowDialog() != DialogResult.OK) return;

? ? ? ? ? ? pictureBox1.Image = null;
? ? ? ? ? ? pictureBox2.Image = null;
? ? ? ? ? ? textBox1.Text = "";

? ? ? ? ? ? image_path = ofd.FileName;
? ? ? ? ? ? pictureBox1.Image = new Bitmap(image_path);
? ? ? ? ? ? image = new Mat(image_path);
? ? ? ? }

? ? ? ? private void Form1_Load(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? confThreshold = 0.8f;
? ? ? ? ? ? nmsThreshold = 0.35f;
? ? ? ? ? ? modelpath = "model/FastestDet.onnx";

? ? ? ? ? ? inpHeight = 512;
? ? ? ? ? ? inpWidth = 512;

? ? ? ? ? ? opencv_net = CvDnn.ReadNetFromOnnx(modelpath);

? ? ? ? ? ? class_names = new List<string>();
? ? ? ? ? ? StreamReader sr = new StreamReader("model/coco.names");
? ? ? ? ? ? string line;
? ? ? ? ? ? while ((line = sr.ReadLine()) != null)
? ? ? ? ? ? {
? ? ? ? ? ? ? ? class_names.Add(line);
? ? ? ? ? ? }
? ? ? ? ? ? num_class = class_names.Count();

? ? ? ? ? ? image_path = "test_img/4.jpg";
? ? ? ? ? ? pictureBox1.Image = new Bitmap(image_path);

? ? ? ? }

? ? ? ? float sigmoid(float x)
? ? ? ? {
? ? ? ? ? ? return (float)(1.0 / (1 + Math.Exp(-x)));
? ? ? ? }

? ? ? ? private unsafe void button2_Click(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? if (image_path == "")
? ? ? ? ? ? {
? ? ? ? ? ? ? ? return;
? ? ? ? ? ? }
? ? ? ? ? ? textBox1.Text = "检测中,请稍等……";
? ? ? ? ? ? pictureBox2.Image = null;
? ? ? ? ? ? Application.DoEvents();

? ? ? ? ? ? image = new Mat(image_path);

? ? ? ? ? ? dt1 = DateTime.Now;

? ? ? ? ? ? BN_image = CvDnn.BlobFromImage(image, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), false, false);

? ? ? ? ? ? //配置图片输入数据
? ? ? ? ? ? opencv_net.SetInput(BN_image);

? ? ? ? ? ? //模型推理,读取推理结果
? ? ? ? ? ? Mat[] outs = new Mat[3] { new Mat(), new Mat(), new Mat() };
? ? ? ? ? ? string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();

? ? ? ? ? ? opencv_net.Forward(outs, outBlobNames);

? ? ? ? ? ? dt2 = DateTime.Now;

? ? ? ? ? ? int num_proposal = outs[0].Size(0);
? ? ? ? ? ? int nout = outs[0].Size(1);

? ? ? ? ? ? int i = 0, j = 0, row_ind = 0; //box_score, xmin,ymin,xamx,ymax,class_score
? ? ? ? ? ? int num_grid_x = 32;
? ? ? ? ? ? int num_grid_y = 32;
? ? ? ? ? ? float* pdata = (float*)outs[0].Data;

? ? ? ? ? ? List<Rect> boxes = new List<Rect>();
? ? ? ? ? ? List<float> confidences = new List<float>();
? ? ? ? ? ? List<int> classIds = new List<int>();

? ? ? ? ? ? for (i = 0; i < num_grid_y; i++)
? ? ? ? ? ? {
? ? ? ? ? ? ? ? for (j = 0; j < num_grid_x; j++)
? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? Mat scores = outs[0].Row(row_ind).ColRange(5, nout);
? ? ? ? ? ? ? ? ? ? double minVal, max_class_socre;
? ? ? ? ? ? ? ? ? ? OpenCvSharp.Point minLoc, classIdPoint;
? ? ? ? ? ? ? ? ? ? // Get the value and location of the maximum score
? ? ? ? ? ? ? ? ? ? Cv2.MinMaxLoc(scores, out minVal, out max_class_socre, out minLoc, out classIdPoint);
? ? ? ? ? ? ? ? ? ? max_class_socre *= pdata[0];
? ? ? ? ? ? ? ? ? ? if (max_class_socre > confThreshold)
? ? ? ? ? ? ? ? ? ? {
? ? ? ? ? ? ? ? ? ? ? ? int class_idx = classIdPoint.X;
? ? ? ? ? ? ? ? ? ? ? ? float cx = (float)((Math.Tanh(pdata[1]) + j) / (float)num_grid_x); ?//cx
? ? ? ? ? ? ? ? ? ? ? ? float cy = (float)((Math.Tanh(pdata[2]) + i) / (float)num_grid_y); ? //cy
? ? ? ? ? ? ? ? ? ? ? ? float w = sigmoid(pdata[3]); ? //w
? ? ? ? ? ? ? ? ? ? ? ? float h = sigmoid(pdata[4]); ?//h

? ? ? ? ? ? ? ? ? ? ? ? cx *= image.Cols;
? ? ? ? ? ? ? ? ? ? ? ? cy *= image.Rows;
? ? ? ? ? ? ? ? ? ? ? ? w *= image.Cols;
? ? ? ? ? ? ? ? ? ? ? ? h *= image.Rows;

? ? ? ? ? ? ? ? ? ? ? ? int left = (int)(cx - 0.5 * w);
? ? ? ? ? ? ? ? ? ? ? ? int top = (int)(cy - 0.5 * h);

? ? ? ? ? ? ? ? ? ? ? ? confidences.Add((float)max_class_socre);
? ? ? ? ? ? ? ? ? ? ? ? boxes.Add(new Rect(left, top, (int)w, (int)h));
? ? ? ? ? ? ? ? ? ? ? ? classIds.Add(class_idx);
? ? ? ? ? ? ? ? ? ? }
? ? ? ? ? ? ? ? ? ? row_ind++;
? ? ? ? ? ? ? ? ? ? pdata += nout;
? ? ? ? ? ? ? ? }
? ? ? ? ? ? }

? ? ? ? ? ? int[] indices;
? ? ? ? ? ? CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);

? ? ? ? ? ? result_image = image.Clone();

? ? ? ? ? ? for (int ii = 0; ii < indices.Length; ++ii)
? ? ? ? ? ? {
? ? ? ? ? ? ? ? int idx = indices[ii];
? ? ? ? ? ? ? ? Rect box = boxes[idx];
? ? ? ? ? ? ? ? Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);
? ? ? ? ? ? ? ? string label = class_names[classIds[idx]] + ":" + confidences[idx].ToString("0.00");
? ? ? ? ? ? ? ? Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y - 5), HersheyFonts.HersheySimplex, 0.75, new Scalar(0, 0, 255), 1);
? ? ? ? ? ? }

? ? ? ? ? ? pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
? ? ? ? ? ? textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

? ? ? ? }

? ? ? ? private void pictureBox2_DoubleClick(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? Common.ShowNormalImg(pictureBox2.Image);
? ? ? ? }

? ? ? ? private void pictureBox1_DoubleClick(object sender, EventArgs e)
? ? ? ? {
? ? ? ? ? ? Common.ShowNormalImg(pictureBox1.Image);
? ? ? ? }
? ? }
}

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Windows.Forms;

namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        float confThreshold;
        float nmsThreshold;
        string modelpath;

        int inpHeight;
        int inpWidth;

        List<string> class_names;
        int num_class;

        Net opencv_net;
        Mat BN_image;

        Mat image;
        Mat result_image;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            confThreshold = 0.8f;
            nmsThreshold = 0.35f;
            modelpath = "model/FastestDet.onnx";

            inpHeight = 512;
            inpWidth = 512;

            opencv_net = CvDnn.ReadNetFromOnnx(modelpath);

            class_names = new List<string>();
            StreamReader sr = new StreamReader("model/coco.names");
            string line;
            while ((line = sr.ReadLine()) != null)
            {
                class_names.Add(line);
            }
            num_class = class_names.Count();

            image_path = "test_img/4.jpg";
            pictureBox1.Image = new Bitmap(image_path);

        }

        float sigmoid(float x)
        {
            return (float)(1.0 / (1 + Math.Exp(-x)));
        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            Application.DoEvents();

            image = new Mat(image_path);

            dt1 = DateTime.Now;

            BN_image = CvDnn.BlobFromImage(image, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), false, false);

            //配置图片输入数据
            opencv_net.SetInput(BN_image);

            //模型推理,读取推理结果
            Mat[] outs = new Mat[3] { new Mat(), new Mat(), new Mat() };
            string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();

            opencv_net.Forward(outs, outBlobNames);

            dt2 = DateTime.Now;

            int num_proposal = outs[0].Size(0);
            int nout = outs[0].Size(1);

            int i = 0, j = 0, row_ind = 0; //box_score, xmin,ymin,xamx,ymax,class_score
            int num_grid_x = 32;
            int num_grid_y = 32;
            float* pdata = (float*)outs[0].Data;

            List<Rect> boxes = new List<Rect>();
            List<float> confidences = new List<float>();
            List<int> classIds = new List<int>();

            for (i = 0; i < num_grid_y; i++)
            {
                for (j = 0; j < num_grid_x; j++)
                {
                    Mat scores = outs[0].Row(row_ind).ColRange(5, nout);
                    double minVal, max_class_socre;
                    OpenCvSharp.Point minLoc, classIdPoint;
                    // Get the value and location of the maximum score
                    Cv2.MinMaxLoc(scores, out minVal, out max_class_socre, out minLoc, out classIdPoint);
                    max_class_socre *= pdata[0];
                    if (max_class_socre > confThreshold)
                    {
                        int class_idx = classIdPoint.X;
                        float cx = (float)((Math.Tanh(pdata[1]) + j) / (float)num_grid_x);  //cx
                        float cy = (float)((Math.Tanh(pdata[2]) + i) / (float)num_grid_y);   //cy
                        float w = sigmoid(pdata[3]);   //w
                        float h = sigmoid(pdata[4]);  //h

                        cx *= image.Cols;
                        cy *= image.Rows;
                        w *= image.Cols;
                        h *= image.Rows;

                        int left = (int)(cx - 0.5 * w);
                        int top = (int)(cy - 0.5 * h);

                        confidences.Add((float)max_class_socre);
                        boxes.Add(new Rect(left, top, (int)w, (int)h));
                        classIds.Add(class_idx);
                    }
                    row_ind++;
                    pdata += nout;
                }
            }

            int[] indices;
            CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);

            result_image = image.Clone();

            for (int ii = 0; ii < indices.Length; ++ii)
            {
                int idx = indices[ii];
                Rect box = boxes[idx];
                Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);
                string label = class_names[classIds[idx]] + ":" + confidences[idx].ToString("0.00");
                Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y - 5), HersheyFonts.HersheySimplex, 0.75, new Scalar(0, 0, 255), 1);
            }

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

下载

源码下载

文章来源:https://blog.csdn.net/weixin_46771779/article/details/134930047
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。