分布式之任务调度Elastic-Job学习一
1 E-Job
1.1 任务调度高级需求
Quartz 的不足:
1、 作业只能通过 DB 抢占随机负载,无法协调
2、 任务不能分片——单个任务数据太多了跑不完,消耗线程,负载不均
3、 作业日志可视化监控、统计
1.2 发展历史
E-Job 是怎么来的?
在当当的 ddframe 框架中,需要一个任务调度系统(作业系统)。
实现的话有两种思路,一个是修改开源产品,一种是基于开源产品搭建(封装),当当选择了后者,最开始这个调度系统叫做 dd-job。它是一个无中心化的分布式调度框架。因为数据库缺少分布式协调功能(比如选主),替换为 Zookeeper 后,增加了弹性扩容和数据分片的功能。
Elastic-Job 是 ddframe 中的 dd-job 作业模块分离出来的作业框架,基于 Quartz和 Curator 开发,在 2015 年开源。
轻量级,无中心化解决方案。
为什么说是去中心化呢?因为没有统一的调度中心。集群的每个节点都是对等的,节点之间通过注册中心进行分布式协调。E-Job 存在主节点的概念,但是主节点没有调度的功能,而是用于处理一些集中式任务,如分片,清理运行时信息等。
思考:如果 ZK 挂了怎么办
每个任务有独立的线程池。
从官网开始
http://elasticjob.io/docs/elastic-job-lite/00-overview/
https://github.com/elasticjob
Elastic-Job 最开始只有一个 elastic-job-core 的项目,在 2.X 版本以后主要分为Elastic-Job-Lite 和 Elastic-Job-Cloud 两个子项目。其中,Elastic-Job-Lite 定位为轻量级 无 中 心 化 解 决 方 案 , 使 用 jar 包 的 形 式 提 供 分 布 式 任 务 的 协 调 服 务 。 而Elastic-Job-Cloud 使用 Mesos + Docker 的解决方案,额外提供资源治理、应用分发以及进程隔离等服务(跟 Lite 的区别只是部署方式不同,他们使用相同的 API,只要开发一次)。
1.3 功能特性
? 分布式调度协调:用 ZK 实现注册中心
? 错过执行作业重触发(Misfire)
? 支持并行调度(任务分片)
? 作业分片一致性,保证同一分片在分布式环境中仅一个执行实例
? 弹性扩容缩容:将任务拆分为 n 个任务项后,各个服务器分别执行各自分配到的任务项。一旦有新的服务器加入集群,或现有服务器下线,elastic-job 将在保留本次任务执行不变的情况下,下次任务开始前触发任务重分片。
? 失效转移 failover:弹性扩容缩容在下次作业运行前重分片,但本次作业执行的过程中,下线的服务器所分配的作业将不会重新被分配。失效转移功能可以在本次作业运行中用空闲服务器抓取孤儿作业分片执行。同样失效转移功能也会牺牲部
分性能。
? 支持作业生命周期操作(Listener)
? 丰富的作业类型(Simple、DataFlow、Script)
? Spring 整合以及命名空间提供
? 运维平台
1.4 项目架构
应用在各自的节点执行任务,通过 ZK 注册中心协调。节点注册、节点选举、任务分片、监听都在 E-Job 的代码中完成。
2 Java 开发
工程:ejob-standalone
2.1 pom 依赖
<dependency>
<groupId>com.dangdang</groupId>
<artifactId>elastic-job-lite-core</artifactId>
<version>2.1.5</version>
</dependency>
2.2 任务类型
standalone 工程
任务类型有三种:
2.2.1 SimpleJob
SimpleJob: 简单实现,未经任何封装的类型。需实现 SimpleJob 接口
ejob-standalone MySimpleJob.java
public class MyElasticJob implements SimpleJob {
public void execute(ShardingContext context) {
System.out.println(String.format("Item: %s | Time: %s | Thread: %s ", context.getShardingItem(), new SimpleDateFormat("HH:mm:ss").format(new Date()), Thread.currentThread().getId()));
}
}
2.2.2 DataFlowJob
DataFlowJob:Dataflow 类型用于处理数据流,必须实现 fetchData()和processData()的方法,一个用来获取数据,一个用来处理获取到的数据。
ejob-standalone MyDataFlowJob.java
public class MyDataFlowJob implements DataflowJob<String> {
@Override
public List<String> fetchData(ShardingContext shardingContext) {
// 获取到了数据
return Arrays.asList("qingshan","jack","seven");
}
@Override
public void processData(ShardingContext shardingContext, List<String> data) {
data.forEach(x-> System.out.println("开始处理数据:"+x));
}
}
2.2.3 ScriptJob
Script:Script 类型作业意为脚本类型作业,支持 shell,python,perl 等所有类型脚本。D 盘下新建 1.bat,内容
@echo ------【脚本任务】Sharding Context: %*
ejob-standalone script.ScriptJobTest
只要指定脚本的内容或者位置
2.3 E-Job 配置
2.3.1 配置步骤
配置手册:http://elasticjob.io/docs/elastic-job-lite/02-guide/config-manual/
1、ZK 注册中心配置(后面继续分析)
2、作业配置(从底层往上层:Core——Type——Lite)
配置级别 | 配置类 | 配置内容 |
---|---|---|
Core | JobCoreConfiguration | 用于提供作业核心配置信息,如:作业名称、CRON 表达式、分片总数等。 |
Type | JobTypeConfiguration | 有 3 个子类分别对应 SIMPLE, DATAFLOW 和 SCRIPT 类型作业,提供 3 种作业需要的不同配置,如:DATAFLOW 类型是否流式处理或 SCRIPT 类型的命 |
令行等。Simple 和 DataFlow 需要指定任务类的路径。 | ||
Root | JobRootConfiguration | 有 2 个子类分别对应 Lite 和 Cloud 部署类型,提供不同部署类型所需的配置,如:Lite 类型的是否需要覆盖本地配置或 Cloud 占用 CPU 或 Memory数量等。可以定义分片策略。http://elasticjob.io/docs/elastic-job-lite/02-guide/job-sharding-strategy/ |
public class SimpleJobTest {
public static void main(String[] args) {
// ZK 注册中心
CoordinatorRegistryCenter regCenter = new ZookeeperRegistryCenter(new
ZookeeperConfiguration("localhost:2181", "elastic-job-demo"));
regCenter.init();
// 定义作业核心配置
JobCoreConfiguration simpleCoreConfig = JobCoreConfiguration.newBuilder("MyElasticJob", "0/2 * * * * ?", 1).build();
// 定义 SIMPLE 类型配置
SimpleJobConfiguration simpleJobConfig = new SimpleJobConfiguration(simpleCoreConfig, MyElasticJob.class.getCanonicalName());
// 定义 Lite 作业根配置
LiteJobConfiguration simpleJobRootConfig = LiteJobConfiguration.newBuilder(simpleJobConfig).build();
// 构建 Job
new JobScheduler(regCenter, simpleJobRootConfig).init();
}
}
作业配置分为 3 级,分别是 JobCoreConfiguration,JobTypeConfiguration 和LiteJobConfiguration 。 LiteJobConfiguration 使 用 JobTypeConfiguration ,JobTypeConfiguration 使用 JobCoreConfiguration,层层嵌套。
JobTypeConfiguration 根 据 不 同 实 现 类 型 分 为 SimpleJobConfiguration ,DataflowJobConfiguration 和 ScriptJobConfiguration。E-Job 使用 ZK 来做分布式协调,所有的配置都会写入到 ZK 节点。
2.3.2 ZK 注册中心数据结构
一个任务一个二级节点。
这里面有些节点是临时节点,只有任务运行的时候才能看到。
注意:修改了任务重新运行任务不生效,是因为 ZK 的信息不会更新, 除非把overwrite 修改成 true
config 节点
JSON 格式存储。
存储任务的配置信息,包含执行类,cron 表达式,分片算法类,分片数量,分片参数等等。
{
"jobName": "MySimpleJob", "jobClass": "job.MySimpleJob", "jobType": "SIMPLE", "cron": "0/2 * * * * ?", "shardingTotalCount": 1, "shardingItemParameters": "", "jobParameter": "", "failover": false, "misfire": true, "description": "", "jobProperties": {
"job_exception_handler": "com.dangdang.ddframe.job.executor.handler.impl.DefaultJobExceptionHandler", "executor_service_handler": "com.dangdang.ddframe.job.executor.handler.impl.DefaultExecutorServiceHandler" }, "monitorExecution": true, "maxTimeDiffSeconds": -1, "monitorPort": -1, "jobShardingStrategyClass": "", "reconcileIntervalMinutes": 10, "disabled": false, "overwrite": false
}
config 节点的数据是通过ConfigService 持久化到 zookeeper中去的。默认状态下,如果你修改了 Job 的配置比如 cron 表达式、分片数量等是不会更新到 zookeeper 上去的,除非你在 Lite 级别的配置把参数 overwrite 修改成 true。
LiteJobConfiguration simpleJobRootConfig = LiteJobConfiguration.newBuilder(simpleJobConfig).overwrite(true).build();
instances 节点
同一个 Job 下的 elastic-job 的部署实例。一台机器上可以启动多个 Job 实例,也就是 Jar 包。instances 的命名是
leader 节点
任务实例的主节点信息,通过 zookeeper 的主节点选举,选出来的主节点信息。在elastic job 中,任务的执行可以分布在不同的实例(节点)中,但任务分片等核心控制,需要由主节点完成。因此,任务执行前,需要选举出主节点。
下面有三个子节点:
election:主节点选举
sharding:分片
failover:失效转移
election 下面的 instance 节点显示了当前主节点的实例 ID:jobInstanceId。
election 下面的 latch 节点也是一个永久节点用于选举时候的实现分布式锁。
sharding 节点下面有一个临时节点,necessary,是否需要重新分片的标记。如果分片总数变化,或任务实例节点上下线或启用/禁用,以及主节点选举,都会触发设置重分片标记,主节点会进行分片计算。
servers 节点
任务实例的信息,主要是 IP 地址,任务实例的 IP 地址。跟 instances 不同,如果多个任务实例在同一台机器上运行则只会出现一个 IP 子节点。可在 IP 地址节点写入DISABLED 表示该任务实例禁用。
sharding 节点
任务的分片信息,子节点是分片项序号,从 0 开始。分片个数是在任务配置中设置的。分片项序号的子节点存储详细信息。每个分片项下的子节点用于控制和记录分片运行状态。最主要的子节点就是 instance。
子节点名 | 是否临时节点 | 描述 |
---|---|---|
instance | 否 | 执行该分片项的作业运行实例主键 |
running | 否 | 分片项正在运行的状态 仅配置 monitorExecution 时有效 |
failover | 是 | 如果该分片项被失效转移分配给其他作业服务器,则此节点值记录执行此分片的作业服务器 IP |
misfire | 否 | 是否开启错过任务重新执行 |
disabled | 否 | 是否禁用此分片项 |
3 运维平台
3.1 下载解压运行
git 下载源码 https://github.com/elasticjob/elastic-job-lite
对 elastic-job-lite-console 打包得到安装包(网盘已提供现成的 console 包)。解压缩 elastic-job-lite-console-${version}.tar.gz 并执行 bin\start.sh(Windows运行.bat)。打开浏览器访问 http://localhost:8899/即可访问控制台。
8899 为默认端口号,可通过启动脚本输入-p 自定义端口号。
默认管理员用户名和密码是 root/root。右上角可以切换语言。
3.2 添加 ZK 注册中心
第一步,添加注册中心,输入 ZK
运维平台和 elastic-job-lite 并无直接关系,是通过读取作业注册中心数据展现作业状态,或更新注册中心数据修改全局配置。
控制台只能控制作业本身是否运行,但不能控制作业进程的启动,因为控制台和作业本身服务器是完全分离的,控制台并不能控制作业服务器。
可以对作业进行操作
3.3 事件追踪
http://elasticjob.io/docs/elastic-job-lite/02-guide/event-trace/
Elastic-Job 提供了事件追踪功能,可通过事件订阅的方式处理调度过程的重要事件,用于查询、统计和监控。
Elastic-Job-Lite 在配置中提供了 JobEventConfiguration,目前支持数据库方式配置。
ejob-standalone:simple.SimpleJobTest
BasicDataSource dataSource = new BasicDataSource();
dataSource.setDriverClassName("com.mysql.jdbc.Driver");
dataSource.setUrl("jdbc:mysql://localhost:3306/elastic_job_log");
dataSource.setUsername("root");
dataSource.setPassword("123456");
JobEventConfiguration jobEventConfig = new JobEventRdbConfiguration(dataSource); …………
new JobScheduler(regCenter, simpleJobRootConfig, jobEventConfig).init();
事件追踪的 event_trace_rdb_url 属性对应库自动创建 JOB_EXECUTION_LOG 和JOB_STATUS_TRACE_LOG 两张表以及若干索引。
需要在运维平台中添加数据源信息,并且连接:
在作业历史中查询:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!