算法设计与分析-图算法小结BFS/DFS/Topologic/Dijkstra/Floyd/最大流
图
注:CSDN貌似不支持较长公式,可以复制到Markdown编辑器查看
图的表示
- 邻接矩阵 空间复杂度 Θ ( V 2 ) Θ(V^2) Θ(V2)
- 邻接链表 空间复杂度 Θ ( V + E ) Θ(V+E) Θ(V+E)
BFS
-
邻接链表 时间复杂度 Θ ( V + E ) Θ(V+E) Θ(V+E)
-
void BFS(Graph G, int v) {//从顶点v出发,广度优先遍历图G visit(v);//访问初始顶点 vsited[v] = true;//标记访问 Enqueue(Q, v);//入队 while (!isEmpty(Q)) { DeQueue(Q, v);//出队 for (w = FirstNeighbor(G, v); w >= 0; w = NextNeighbor(G, v, w)) if (!visited[w]) {//w为v未访问邻接顶点 visit(w);//访问 visited[w] = true;//标记 EnQueue(Q, w);//进队 } } }
-
无权最短路径问题
-
前驱子图,BFS生成树
DFS
-
递归是核心
-
void DFS(Graph G,int v){ visit(v); visited[v]=true; for(w=FirstNeighbour(G,v);w>=0;w=NextNeighor(G,v,w)){ if(!visited[w]){ DFS(G,w); } } }
Topolpgical sort
-
拓扑排序是可以用来简单地判环的,若能则无环。
-
// deg是入度,在存图的时候需要录入数据 // A是排序后的数组 int deg[MAXN], A[MAXN]; bool toposort(int n) { int cnt = 0; queue<int> q;//若是priority_queue,则可以输出字典序最大/小拓扑序 for (int i = 1; i <= n; ++i) if (deg[i] == 0) q.push(i); while (!q.empty()) { int t = q.front(); q.pop(); A[cnt++] = t; for (auto to : edges[t]) { deg[to]--; if (deg[to] == 0) // 出现了新的入度为0的点 q.push(to); } } return cnt == n;// }
最小生成树
- [Kruskal][https://blog.csdn.net/yf_li123/article/details/75195549] , [Prim算法][https://blog.csdn.net/yf_li123/article/details/75148998]
单源最短路径
- Bellman-Ford
//检测有无负环
//spfa可以计算有负环 单元最短路径
void bellman_ford()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for (int i = 0; i < k; i ++ )
{
memcpy(last, dist, sizeof dist);
for (int j = 0; j < m; j ++ )
{
auto e = edges[j];
dist[e.b] = min(dist[e.b], last[e.a] + e.c);
}
}
}
- [Topological-sort][https://blog.csdn.net/dragon8462_/article/details/119746134]
//只能有向无环图
-
Dijisktra
[Dijkstra算法介绍及其优先队列优化和斐波那契堆优化][https://blog.csdn.net/qq_33903332/article/details/116095232]
//
int dijkstra()
{
// 初始化, 一号点到起点的距离为0, 其他点到起点的距离为正无穷
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for(int i = 0; i < n -1; i ++) // n - 1迭代
{
int t = -1;
// 找到未加到 st 集合的最短距离
for(int j = 1; j <= n ; j ++)
if( !st[j] && (t == -1 || dist[t] > dist[j]) )
t = j;
// 将t点加入到集合
st[t] = true;
// 更新从t出去的所有的边,他组成的路径能不能更强其他点的距离
for(int j = 1; j <= n; j++)
dist[j] = min(dist[j], dist[t] + w[t][j]);
}
}
//堆优化
const int N = 1e5+7;
const int INF = 0x3f3f3f3f;
struct Node{
int to, w;
};//to指向另一端的结点, w表示边的长度
vector<Node> g[N];//邻接表存储图
int n, m, s;//n-结点数, m-边数, s-源点
int d[N];//记录源点s到图中所有结点的最短路
bool vis[N];//在Dijkstra算法中用于记录结点是否访问
void Dijkstra_2(int s) {
memset(d, 0x3f, sizeof(d));//初始距离设为INF
d[s] = 0;//源点到源点的距离为 0
//使用优先队列实现堆, 默认以pair的first从大到小排序
priority_queue< pair<int, int> > q;
q.push(make_pair(0, s));//源点放入堆中
while (!q.empty()) {
pair<int, int> t = q.top(); q.pop();
int from = t.second;
if (vis[from]) continue;//跳过已经访问过的结点
vis[from] = true;
//以该点为中间结点更新最短路径
for (int i = 0; i < g[from].size(); i++) {
int to = g[from][i].to;
int w = g[from][i].w;
if (d[to] > d[from] + w) {
d[to] = d[from] + w;
if (vis[to] == false) {
//first以负数存储, d小的反而大, 在堆顶
q.push(make_pair(-d[to], to));
}
}
}
}
}
所有点对最短路径
-
Dijisktra
跑n遍(不带负权)-Greedy -
Floyd-Warshall
-DP (假设权重可以为负,但不能有权重为负的环路。)d i j k d_{ij}^k dijk?为从结点 $i $到 j j j 的所有中间结点全部取自集合 { 1 , 2 , . . . , k } \{1,2,...,k\} {1,2,...,k}的一条最短路径的权重。
当 k = 0 k = 0 k=0时,也就是从结点 $i $到 j j j 的路径上不包括任何结点。这样路径上只有 ( i , j ) (i,j) (i,j)这一条边,此时 d i j 0 = w ( i , j ) d_{ij}^0 = w(i,j) dij0?=w(i,j)。
当 k ? 1 k \geqslant 1 k?1时,又可以分为两种情况:
- 结点 $i $到 j j j 的最短路径 p p p,没有经过结点 k k k,此时 d i j k = d i j k ? 1 d_{ij}^k = d_{ij}^{k-1} dijk?=dijk?1?。
- 结点 $i $到 j j j 的最短路径 p p p,经过结点了 k k k, d i j k = d i k k ? 1 + d k j k ? 1 d_{ij}^k = d_{ik}^{k-1} +d_{kj}^{k-1} dijk?=dikk?1?+dkjk?1?。
D
$d_{ij}^k= \begin{cases} w(i,j)& k=0\ min{d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1} } & k\geqslant 1\ \end{cases}\$
PI(前驱矩阵)
$\pi_{ij}^k= \begin{cases} \pi_{ij}^{k-1} & d_{ij}^{k-1} \leqslant d_{ik}^{k-1} + d_{kj}^{k-1}\ \pi_{kj}^{k-1} & d_{ij}^{k-1} \gt d_{ik}^{k-1} + d_{kj}^{k-1}\ \end{cases}\$
FLOYD-WARSHALL(W) n = W.rows D0 = W let P = n x n martix initialized with nil//前驱矩阵 for i = 1 to n for j = 1 to n if i != j and D[i, j] < ∞ P[i, j] = i for k = 1 to n Dk = new n x n matrix //可以直接用两个矩阵颠倒 for i=1 to n for j= 1 to n D[ij] = min(Dk-1[ij], Dk-1[ik] + Dk-1[kj])
$$D^0 = \begin{bmatrix} 0 & 3 & 8 & \infty & -4 \ \infty & 0 & \infty & 1 & 7 \ \infty & 4 & 0 & \infty & \infty \ 2 & \infty & -5 & 0 & \infty \ \infty & \infty & \infty & 6 & 0 \ \end{bmatrix} P^0 = \begin{bmatrix} NIL & 1 & 1 & NIL & 1 \ NIL & NIL & NIL & 2 & 2 \ NIL & 3 & NIL & NIL & NIL \ 4 & NIL & 4 & NIL & NIL \ NIL & NIL & NIL & 5 & NIL \ \end{bmatrix}\ D^1 = \begin{bmatrix} 0 & 3 & 8 & \infty & -4 \ \infty & 0 & \infty & 1 & 7 \ \infty & 4 & 0 & \infty & \infty \ 2 & 5 & -5 & 0 & -2 \ \infty & \infty & \infty & 6 & 0 \ \end{bmatrix} P^1 = \begin{bmatrix} NIL & 1 & 1 & NIL & 1 \ NIL & NIL & NIL & 2 & 2 \ NIL & 3 & NIL & NIL & NIL \ 4 & 1 & 4 & NIL & 1 \ NIL & NIL & NIL & 5 & NIL \ \end{bmatrix}\ D^2 = \begin{bmatrix} 0 & 3 & 8 & 4 & -4 \ \infty & 0 & \infty & 1 & 7 \ \infty & 4 & 0 & 5 & 11 \ 2 & 5 & -5 & 0 & -2 \ \infty & \infty & \infty & 6 & 0 \ \end{bmatrix} P^2 = \begin{bmatrix} NIL & 1 & 1 & 2 & 1 \ NIL & NIL & NIL & 2 & 2 \ NIL & 3 & NIL & 2 & 2 \ 4 & 1 & 4 & NIL & 1 \ NIL & NIL & NIL & 5 & NIL \ \end{bmatrix}\ D^3 = \begin{bmatrix} 0 & 3 & 8 & 4 & -4 \ \infty & 0 & \infty & 1 & 7 \ \infty & 4 & 0 & 5 & 11 \ 2 & 5 & -5 & 0 & -2 \ \infty & \infty & \infty & 6 & 0 \ \end{bmatrix} P^3 = \begin{bmatrix} NIL & 1 & 1 & 2 & 1 \ NIL & NIL & NIL & 2 & 2 \ NIL & 3 & NIL & 2 & 2 \ 4 & 3 & 4 & NIL & 1 \ NIL & NIL & NIL & 5 & NIL \ \end{bmatrix}\ D^4 = \begin{bmatrix} 0 & 3 & -1 & 4 & -4 \ 3 & 0 & -4 & 1 & -1 \ 7 & 4 & 0 & 5 & 3 \ 2 & -1 & -5 & 0 & -2 \ 8 & 5 & 1 & 6 & 0 \ \end{bmatrix} P^4 = \begin{bmatrix} NIL & 1 & 4 & 2 & 1 \ 4 & NIL & 4 & 2 & 1 \ 4 & 3 & NIL & 2 & 1 \ 4 & 3 & 4 & NIL & 1 \ 4 & 3 & 4 & 5 & NIL \ \end{bmatrix}\ D^5 = \begin{bmatrix} 0 & 1 & -3 & 2 & -4 \ 3 & 0 & -4 & 1 & -1 \ 7 & 4 & 0 & 5 & 3 \ 2 & -1 & -5 & 0 & -2 \ 8 & 5 & 1 & 6 & 0 \ \end{bmatrix} P^5 = \begin{bmatrix} NIL & 3 & 4 & 5 & 1 \ 4 & NIL & 4 & 2 & 1 \ 4 & 3 & NIL & 2 & 1 \ 4 & 3 & 4 & NIL & 1 \ 4 & 3 & 4 & 5 & NIL \ \end{bmatrix}\\$$
csdn好像不支持这么长的公式
可以参考算法导论或者下面的图片
最大流(流网络的最大容量问题,最小分割问题
参考:https://zhuanlan.zhihu.com/p/356840694
#include <queue>
#include <stdio.h>
#include <cstring>
#define INF 2147483467
using namespace std;
using ll = long long;
const int maxn = 520010, maxm = 520010;
int n, m, s, t;
struct Edge{
ll to, next, weight;
};
Edge edges[maxm];
int edge_cnt = 1, head[maxn], cur[maxn];
void add(int x,int y,int w){
edges[++edge_cnt].next = head[x];
edges[edge_cnt].to = y;
edges[edge_cnt].weight = w;
head[x] = edge_cnt;
}
int level[maxn];
bool bfs(){
memset(level, 0, sizeof(level));
memcpy(cur, head, sizeof(head));
queue<int> q;
q.push(s);
level[s] = 1;
while (!q.empty()){
int u = q.front();
q.pop();
for (int i = head[u]; i != 0; i = edges[i].next){
ll v = edges[i].to, flow = edges[i].weight;
if (flow > 0 && level[v] == 0){
level[v] = level[u] + 1;
q.push(v);
}
}
}
return (level[t] != 0);
}
int dfs(int p = s, int cur_flow = INF){
if (p == t) return cur_flow;
ll ret = 0;
for (int i = cur[p]; i != 0; i = edges[i].next){
cur[p] = i;
ll v = edges[i].to, vol = edges[i].weight;
if (level[v] == level[p] + 1 && vol > 0){
int f = dfs(v, min(cur_flow - ret, vol));
edges[i].weight -= f;
edges[i^1].weight += f;
ret += f;
if (ret == cur_flow) return ret;
}
}
return ret;
}
ll dinic(){
ll max_flow = 0;
while (bfs()){
max_flow += dfs();
}
return max_flow;
}
int main(){
scanf("%d %d %d %d", &n, &m, &s, &t);
for (int i = 1; i <= m ; ++i){
int x, y, w;
scanf("%d %d %d", &x, &y, &w);
add(x, y, w);
add(y, x, 0);
}
printf("%lld", dinic());
return 0;
}
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!