基于鸢尾花数据集的逻辑回归分类实践
基于鸢尾花数据集的逻辑回归分类实践
重要知识点
逻辑回归 原理简介:
Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:
  
      
       
        
        
          l 
         
        
          o 
         
        
          g 
         
        
          i 
         
        
          ( 
         
        
          z 
         
        
          ) 
         
        
          = 
         
         
         
           1 
          
          
          
            1 
           
          
            + 
           
           
           
             e 
            
            
            
              ? 
             
            
              z 
             
            
           
          
         
        
       
         logi(z)=\frac{1}{1+e^{-z}} 
        
       
     logi(z)=1+e?z1?
其对应的函数图像可以表示如下:
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(-5,5,0.01)
y = 1/(1+np.exp(-x))
plt.plot(x,y)
plt.xlabel('z')
plt.ylabel('y')
plt.grid()
plt.show()

 通过上图我们可以发现 Logistic 函数是单调递增函数,并且在z=0的时候取值为0.5,并且 
     
      
       
       
         l 
        
       
         o 
        
       
         g 
        
       
         i 
        
       
         ( 
        
       
         ? 
        
       
         ) 
        
       
      
        logi(\cdot) 
       
      
    logi(?)函数的取值范围为 
     
      
       
       
         ( 
        
       
         0 
        
       
         , 
        
       
         1 
        
       
         ) 
        
       
      
        (0,1) 
       
      
    (0,1)。
而回归的基本方程为 z = w 0 + ∑ i N w i x i z=w_0+\sum_i^N w_ix_i z=w0?+∑iN?wi?xi?,
将回归方程写入其中为:
  
      
       
        
        
          p 
         
        
          = 
         
        
          p 
         
        
          ( 
         
        
          y 
         
        
          = 
         
        
          1 
         
        
          ∣ 
         
        
          x 
         
        
          , 
         
        
          θ 
         
        
          ) 
         
        
          = 
         
         
         
           h 
          
         
           θ 
          
         
        
          ( 
         
        
          x 
         
        
          , 
         
        
          θ 
         
        
          ) 
         
        
          = 
         
         
         
           1 
          
          
          
            1 
           
          
            + 
           
           
           
             e 
            
            
            
              ? 
             
            
              ( 
             
             
             
               w 
              
             
               0 
              
             
            
              + 
             
             
             
               ∑ 
              
             
               i 
              
             
               N 
              
             
             
             
               w 
              
             
               i 
              
             
             
             
               x 
              
             
               i 
              
             
            
              ) 
             
            
           
          
         
        
       
         p = p(y=1|x,\theta) = h_\theta(x,\theta)=\frac{1}{1+e^{-(w_0+\sum_i^N w_ix_i)}} 
        
       
     p=p(y=1∣x,θ)=hθ?(x,θ)=1+e?(w0?+∑iN?wi?xi?)1?
所以, p ( y = 1 ∣ x , θ ) = h θ ( x , θ ) p(y=1|x,\theta) = h_\theta(x,\theta) p(y=1∣x,θ)=hθ?(x,θ), p ( y = 0 ∣ x , θ ) = 1 ? h θ ( x , θ ) p(y=0|x,\theta) = 1-h_\theta(x,\theta) p(y=0∣x,θ)=1?hθ?(x,θ)
逻辑回归从其原理上来说,逻辑回归其实是实现了一个决策边界:对于函数 y = 1 1 + e ? z y=\frac{1}{1+e^{-z}} y=1+e?z1?,当 z = > 0 z=>0 z=>0时, y = > 0.5 y=>0.5 y=>0.5,分类为1,当 z < 0 z<0 z<0时, y < 0.5 y<0.5 y<0.5,分类为0,其对应的 y y y值我们可以视为类别1的概率预测值.
对于模型的训练而言:实质上来说就是利用数据求解出对应的模型的特定的 w w w。从而得到一个针对于当前数据的特征逻辑回归模型。
而对于多分类而言,将多个二分类的逻辑回归组合,即可实现多分类。
导入包
##  基础函数库
import numpy as np 
import pandas as pd
## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns
本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为
花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾
(Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。
| 变量 | 描述 | 
|---|---|
| sepal length | 花萼长度(cm) | 
| sepal width | 花萼宽度(cm) | 
| petal length | 花瓣长度(cm) | 
| petal width | 花瓣宽度(cm) | 
| target | 鸢尾的三个亚属类别,‘setosa’(0), ‘versicolor’(1), ‘virginica’(2) | 
导入数据
## 我们利用 sklearn 中自带的 iris 数据作为数据载入,并利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式
查看信息
## 利用.info()查看数据的整体信息
iris_features.info()

## 对于特征进行一些统计描述
iris_features.describe()

数据可视化
## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target
## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()

# 箱线图
for col in iris_features.columns:
    sns.boxplot(x='target', y=col, saturation=0.5,palette='pastel', data=iris_all)
    plt.title(col)
    plt.show()
训练和预测模型
## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split
## 选择其类别为0和1的样本 (不包括类别为2的样本)
iris_features_part = iris_features.iloc[:100]
iris_target_part = iris_target[:100]
## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.2, random_state = 2020)
## 从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)
## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
查看结果
## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!