代码随想录 518. 零钱兑换 II

2023-12-19 01:49:40

题目
给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。
假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
示例 1:
输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:
输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。
示例 3:
输入:amount = 10, coins = [10]
输出:1

解题思路
这是一个完全背包问题,用dp[j]表示凑齐金额为j的方案数,对于当前的金额j,dp[j]可以由两部分组成:一部分是不选取当前硬币coins[i],那么dp[j]的值就等于之前的dp[j];另一部分是选取当前硬币coins[i],那么dp[j]的值就等于dp[j - coins[i]](表示已经使用了一个coins[i],还需要凑齐金额j - coins[i])。初始化dp[0]=1. 最后返回dp[amount],即为结果。

代码实现

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount + 1, 0);
        dp[0] = 1;
        for (int i = 0; i < coins.size(); i++) {
            for (int j = coins[i]; j <= amount; j++) {
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
};

文章来源:https://blog.csdn.net/xiaohukuzai/article/details/135073686
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。