2005年AMC8数学竞赛中英文真题典型考题、考点分析和答案解析
今天距离2024年的AMC8美国数学竞赛举办已不足一个月了,赶紧利用周末的时间刷刷真题,查漏补缺吧!如果您有任何关于AMC8比赛的任何问题都可以问我,关于题目的解析也可以交流。
今天我们来看看2005年AMC8竞赛的五道典型考题。欢迎您查看历史文章了解之前各年的真题解析,本系列会持续更新,直到大家参加完2024年的比赛。
好消息!为帮助孩子们更便捷地做真题,六分成长独家将AMC8竞赛2000-2023年的所有真题制作了在线版本,适合各种终端和设备利用碎片化时间,快速、反复做题,提高最后一个月的备考效率,而且这些真题文档和在线练习题会不断更新。
2005年AMC8数学竞赛真题、考点和解析:第3题
这道题的考点是平面几何的轴对称。
如下图所示,为使得图形关于BD对称,则编号为1,2,3,4的方块均需要被涂成黑色,因此总共4个,选D。这种题目需要有一定的空间(平面)想象力,建议在图上,或者电脑上截图画一画,比较快。
2005年AMC8数学竞赛真题、考点和解析:第8题
这道题的考点是数论之奇数和偶数。
直接对各个选项逐个分析:
- 选项A:因为m是奇数,3n也是奇数,那么m+3n就是偶数。
- 选项B:因为3m和n都是奇数,所以3m-n是偶数。
- 选项C:m是奇数,那么m的平方也是奇数,3*m的平方也是奇数,所以两项相加是偶数。
- 选项D:因为n*m和3都是奇数,所以n*m+3是偶数,则(n*m+3)的平方也为偶数。
- 选项E:因为m和n都是奇数,所以3*m*m也是奇数。符合题意,所以这道题选E。
六分成长提醒:这道题目需要了解奇数、偶数的一些特点和性质,如果记不住也没关系,直接假设mn分别为1和3,代入各个选项用排除法也很快。
2005年AMC8数学竞赛真题、考点和解析:第12题
这道题的考点是等差数列,
假设5月5日这天吃了x根香蕉,则从5月5日到5月1日,依次吃了x,x-6x-12,x-18,x-24根香蕉,它们和为100,即x+(x-6)+(x-12)+(x-18)+(x-24)=100。化简为,5x=160,x=32,选D。
六分成长提醒:这种题目也可以直接将选项往里面代入计算,先去中间值30,然后根据计算的结果再代入另一个,也能很快得到答案。这就是选择题的好处。
2005年AMC8数学竞赛真题、考点和解析:第20题
这道题的考点是数论的倍数。
假设经过m个回合后,他们停在同一个点上,则Alice总共顺时针移动了5m个点,而Bob总共逆时针移动了9m个点,因为他们停在同一个点上,所以他们移动的总点数是12的倍数,即5m+9m=14m需要是12的倍数。因为14有2这个因子,所以m必须有6这个因子,m最小为6。所以选A。
2005年AMC8数学竞赛真题、考点和解析:第25题,压轴题
这道题的考点是平面几何的面积。
如上图,在圆内而在正方形之外的区域是图中4块黑色月牙形区域。而在正方形内圆之外的区域如图中灰色部分所示。这2部分面积相等,意味着黑色区域从面积上恰好可以填充灰色区城,也即:圆的面积等于正方形面积。所以πr^2=2^2,计算这个算式:
六分成长提醒:这道题目看起来很复杂,想明白了其实很简单。不要被压轴题吓坏了,因为AMC8竞赛的时间有限,所以题目往往不会很偏、很钻,多思考一些巧的方法,寻找规律。当然了,这些都是建立在对题目熟悉的基础上。
六分成长针对2024年AMC8备考资源
为帮助孩子更好地复习和备考AMC8竞赛,六分成长独家制作了丰富的在线练习真题集和备考文档、视频资料。无论孩子是参加了机构培训班作为辅助学习资源,还是完全自学(实践证明是可行的),都能大幅提高效率。如果您兴趣,欢迎私信与我沟通和交流。
科学备考,利用碎片化时间再冲刺二十多天,收获好成绩!
加油!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!