【算法笔记】动态规划,使用最小花费爬楼梯,详细刨析。
2023-12-13 03:55:57
1.题目描述
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。
通过对题目的分析决定采取动态规划来进行解题,下面将来进行动态规划解题的思路,大家有好的解题方法欢迎留言!!!
2.算法原理及解题代码
2.1状态表示
dp[i]表示:到达i位置时,最小花费
2.2 推导状态转移方程
- 用之前或者之后的状态,推导出dp[i]的值
- 根据最近的一步,来划分问题
2.3初始化
保证填表的时候不越界,dp[0]=dp[1]=0
2.4 填表顺序
从左往右
2.5 返回值
返回最后一个位置的值即可,此时所代表的就是走到最后一节楼梯所花费的时间的大小。本题中按照我以上我思路返回dp[n]
2.6解题代码
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int n = cost.size();
vector<int> dp(n + 1);
dp[0] = dp[1] = 0;
for (int i = 2; i <= n; i++) {
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[n];
}
};
文章来源:https://blog.csdn.net/weixin_51692487/article/details/134950793
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!