VlnPlot画的其实不是原始数据
2024-01-07 18:33:00
昨天的推文描述了让小提琴图肚子变大的做法:让你的小提琴肚子大起来?????????????
在此说明:这种不考虑后果,就让肚子大起来的做法是不严谨的。如需使用,建议将原始图和修改图放在一起对比,且在文章中注明。因为我们去掉0之后就改变了本身的数据分布
1.今天聊聊:如何用ggplot代替Vlnplot画图
1.?seurat包中Vlnplot
.libPaths(c( "/home/data/t040413/R/x86_64-pc-linux-gnu-library/4.2",
"/home/data/t040413/R/yll/usr/local/lib/R/site-library",
"/home/data/refdir/Rlib/", "/usr/local/lib/R/library"))
?
sessionInfo()
getwd()
?
library(Seurat)
pbmc=readRDS("~/gzh/featureplot_dotplot_vlnplot/pbmc3k_final.rds")
VlnPlot(pbmc,features = 'CD4',pt.size = 1)
?
2.?使用ggplot完全复现Vlnplot
p=VlnPlot(pbmc,features = 'CD4',slot = 'data')
head(p$data)
ggplot(p$data ,aes(ident,CD4,fill=ident)) +
geom_violin(scale = "width", trim = T ) +
geom_jitter( )+ theme_bw()+RotatedAxis()
?
如果不喜欢网格,使用theme_classic()主题就可以了,
如果想调节肚子大小,主要是 geom_violin中的scale和adjust两个参数
2.Vlnplot画图数据是经过“噪音”处理的
我们来观察一下画图所需要的的数据
1.?不知是否有读者发现,上图CD4的值有负数,但是我们看到原始的画图数据是没有负数的,其取值范围是【0.000000,4.311621】,如下图。
data=FetchData(object = pbmc, vars = 'CD4', slot = 'data')
head(data)
range(data$CD4)
2. 这就说明我们的画图数据和原始数据是不一样的,为什么呢?然后我去查了一下Vlnplot画图的源代码,结果发现:
vlnplot画图时,给数据添加了噪音 (除了加噪音,Vlnplot还可以选择是否log,在此不表)
data <- FetchData(object = object, vars = features, slot = slot)
....
noise <- rnorm(n = length(x = data[, feature]))/1e+05
#rnorm()?函数用于生成正态分布的随机数。
#在上述代码中,n 参数指定了噪声的长度,等于 data[, feature]?列的长度。因此,noise 是一个长度为 data[, feature]?列长度的正态分布随机数向量。
#正态噪音是一种常用的随机噪音类型。它具有对称性和均匀性,可以模拟真实数据中的噪声。
?
使用trim = F 参数,就可以看到小于0的部分。那些数据都是加了噪音的0
p=VlnPlot(pbmc,features = 'CD4',slot = 'data')
head(p$data)
ggplot(p$data ,aes(ident,CD4,fill=ident)) +
geom_violin(scale = "width", trim = F ,width=1
, adjust = 0.6) + # after_stat(density)( kernel="gaussian") + #"rectangular"
# geom_boxplot(width = 0.2, fill = "red") +
geom_jitter(alpha=0.02 )+ theme_classic()+RotatedAxis()
?
当然,大于0部分肯定也有噪音啊,不过这些噪音都特别小,主要还是为了美化图表
3.开放问题
-
1.你认同seurat包中这种加噪音的方式吗?
-
2.你觉得这种方式是数据造假吗:让你的小提琴肚子大起来
最后,特别鸣谢Jimmy老师
。
大家平时有问题也可以看看生信技能树、单细胞天地、生信菜鸟团公众号。
源代码详细内容,大家可以看下,部分内容我做了注释:
VlnPlot---->ExIPlot--->SingleExIPlot
> debug(Seurat:: VlnPlot)
?
> VlnPlot(pbmc3, "CD4",slot = "data")
debugging in: VlnPlot(pbmc3, "CD4", slot = "data")
?
debug: {
if (!is.null(x = split.by) & getOption(x = "Seurat.warn.vlnplot.split",
default = TRUE)) {
message("The default behaviour of split.by has changed.\n",
"Separate violin plots are now plotted side-by-side.\n",
"To restore the old behaviour of a single split violin,\n",
"set split.plot = TRUE.\n \nThis message will be shown once per session.")
options(Seurat.warn.vlnplot.split = FALSE)
}
return(ExIPlot(object = object, type = ifelse(test = split.plot,
yes = "splitViolin", no = "violin"), features = features,
idents = idents, ncol = ncol, sort = sort, assay = assay,
y.max = y.max, same.y.lims = same.y.lims, adjust = adjust,
pt.size = pt.size, cols = cols, group.by = group.by,
split.by = split.by, log = log, slot = slot, stack = stack,
combine = combine, fill.by = fill.by, flip = flip, add.noise = add.noise,
raster = raster))
}
Browse[2]>
debug: if (!is.null(x = split.by) & getOption(x = "Seurat.warn.vlnplot.split",
default = TRUE)) {
message("The default behaviour of split.by has changed.\n",
"Separate violin plots are now plotted side-by-side.\n",
"To restore the old behaviour of a single split violin,\n",
"set split.plot = TRUE.\n \nThis message will be shown once per session.")
options(Seurat.warn.vlnplot.split = FALSE)
}
?
Browse[2]>
debug: return(ExIPlot(object = object, type = ifelse(test = split.plot,
yes = "splitViolin", no = "violin"), features = features,
idents = idents, ncol = ncol, sort = sort, assay = assay,
y.max = y.max, same.y.lims = same.y.lims, adjust = adjust,
pt.size = pt.size, cols = cols, group.by = group.by, split.by = split.by,
log = log, slot = slot, stack = stack, combine = combine,
fill.by = fill.by, flip = flip, add.noise = add.noise, raster = raster))
Browse[2]> ExIPlot
?
function (object, features, type = "violin", idents = NULL, ncol = NULL,
sort = FALSE, assay = NULL, y.max = NULL, same.y.lims = FALSE,
adjust = 1, cols = NULL, pt.size = 0, group.by = NULL, split.by = NULL,
log = FALSE, slot = "data", stack = FALSE, combine = TRUE,
fill.by = NULL, flip = FALSE, add.noise = TRUE, raster = NULL)
{
?
#在 R 语言中,%||% 运算符称为“或,否则返回”。
#它的作用是,如果左边的表达式值不为空,则返回左边的表达式值;
# 如果左边的表达式值为空,则返回右边的表达式值。
????assay?<-?assay?%||%?DefaultAssay(object?=?object)
#首先检查 assay 参数是否为空。如果为空,则将其设置为 DefaultAssay()?函数的返回值。
#DefaultAssay()?函数将返回 Seurat 对象的默认测量数据集。
????
DefaultAssay(object = object) <- assay
if (isTRUE(x = stack)) {
if (!is.null(x = ncol)) {
warning("'ncol' is ignored with 'stack' is TRUE",
call. = FALSE, immediate. = TRUE)
}
if (!is.null(x = y.max)) {
warning("'y.max' is ignored when 'stack' is TRUE",
call. = FALSE, immediate. = TRUE)
}
}
else {
????#?这里的ncol目的:根据给定的基因个数来决定最终展示的图形分成几列
????
ncol <- ncol %||% ifelse(test = length(x = features) >
9, yes = 4, no = min(length(x = features), 3))
}
#获取画图的数据,极其关键的步骤
data <- FetchData(object = object, vars = features, slot = slot)
pt.size <- pt.size %||% AutoPointSize(data = object)
features <- colnames(x = data)
?
?
?
#This code snippet ensures that the correct cells are used for generating the violin plot, based on whether specific cell identities have been requested for plotting.
if (is.null(x = idents)) {
cells <- colnames(x = object)
}
else {
?
#Idents(object = object)() 括号用于调用函数。如果函数只有一个参数,则通常可以省略括号。
#但是,在某些情况下,括号仍然是必要的。
cells <- names(x = Idents(object = object)[Idents(object = object) %in%
idents])
}
?
?#这个地方不太好理解,不知道对不对~???
#在 R 语言中,[ 运算符用于访问矩阵或列表中的元素。
#在 data[cells, , drop = FALSE] 中,第一个参数是 data 矩阵。第二个参数是 cells 向量,它指定要访问的元素的索引。
#第三个参数是 drop = FALSE,它指定将结果保留为矩阵
?
data <- data[cells, , drop = FALSE]
idents <- if (is.null(x = group.by)) {
Idents(object = object)[cells]
}
else {
object[[group.by, drop = TRUE]][cells]
}
if (!is.factor(x = idents)) {
idents <- factor(x = idents)
}
if (is.null(x = split.by)) {
split <- NULL
}
else {
split <- object[[split.by, drop = TRUE]][cells]
if (!is.factor(x = split)) {
split <- factor(x = split)
}
if (is.null(x = cols)) {
cols <- hue_pal()(length(x = levels(x = idents)))
cols <- Interleave(cols, InvertHex(hexadecimal = cols))
}
else if (length(x = cols) == 1 && cols == "interaction") {
split <- interaction(idents, split)
cols <- hue_pal()(length(x = levels(x = idents)))
}
else {
cols <- Col2Hex(cols)
}
if (length(x = cols) < length(x = levels(x = split))) {
cols <- Interleave(cols, InvertHex(hexadecimal = cols))
}
cols <- rep_len(x = cols, length.out = length(x = levels(x = split)))
names(x = cols) <- levels(x = split)
if ((length(x = cols) > 2) & (type == "splitViolin")) {
warning("Split violin is only supported for <3 groups, using multi-violin.")
type <- "violin"
}
}
if (same.y.lims && is.null(x = y.max)) {
y.max <- max(data)
}
?
if (isTRUE(x = stack)) {
return(MultiExIPlot(type = type, data = data, idents = idents,
split = split, sort = sort, same.y.lims = same.y.lims,
adjust = adjust, cols = cols, pt.size = pt.size,
log = log, fill.by = fill.by, add.noise = add.noise,
flip = flip))
}
?
plots <- lapply(X = features, FUN = function(x) {
return(SingleExIPlot(type = type, data = data[, x, drop = FALSE],
idents = idents, split = split, sort = sort, y.max = y.max,
adjust = adjust, cols = cols, pt.size = pt.size,
log = log, add.noise = add.noise, raster = raster))
})
label.fxn <- switch(EXPR = type, violin = if (stack) {
xlab
} else {
ylab
}, splitViolin = if (stack) {
xlab
} else {
ylab
}, ridge = xlab, stop("Unknown ExIPlot type ", type, call. = FALSE))
?
for (i in 1:length(x = plots)) {
key <- paste0(unlist(x = strsplit(x = features[i], split = "_"))[1],
"_")
obj <- names(x = which(x = Key(object = object) == key))
if (length(x = obj) == 1) {
if (inherits(x = object[[obj]], what = "DimReduc")) {
plots[[i]] <- plots[[i]] + label.fxn(label = "Embeddings Value")
}
else if (inherits(x = object[[obj]], what = "Assay")) {
next
}
else {
warning("Unknown object type ", class(x = object),
immediate. = TRUE, call. = FALSE)
plots[[i]] <- plots[[i]] + label.fxn(label = NULL)
}
}
else if (!features[i] %in% rownames(x = object)) {
plots[[i]] <- plots[[i]] + label.fxn(label = NULL)
}
}
if (combine) {
plots <- wrap_plots(plots, ncol = ncol)
if (length(x = features) > 1) {
plots <- plots & NoLegend()
}
}
return(plots)
}
<bytecode: 0x565001d8f568>
<environment: namespace:Seurat>
########################################################################################3333
?
?
Browse[2]> SingleExIPlot
function (data, idents, split = NULL, type = "violin", sort = FALSE,
y.max = NULL, adjust = 1, pt.size = 0, cols = NULL, seed.use = 42,
log = FALSE, add.noise = TRUE, raster = NULL)
{
if (!is.null(x = raster) && isTRUE(x = raster)) {
if (!PackageCheck("ggrastr", error = FALSE)) {
stop("Please install ggrastr from CRAN to enable rasterization.")
}
}
if (PackageCheck("ggrastr", error = FALSE)) {
if ((nrow(x = data) > 1e+05) & !isFALSE(raster)) {
message("Rasterizing points since number of points exceeds 100,000.",
"\nTo disable this behavior set `raster=FALSE`")
raster <- TRUE
}
}
if (!is.null(x = seed.use)) {
set.seed(seed = seed.use)
}
?
?
#在 R 语言中,||?运算符称为“或,否则返回”。它的作用是,如果左边的表达式值为真,则返回左边的表达式值;如果左边的表达式值为假,则返回右边的表达式值。
?
#在 if (!is.data.frame(x = data) || ncol(x = data) != 1) { 中,|| 运算符用于检查 data 对象是否是数据框并且是否只有一个列。
#如果 data 对象不是数据框,则 is.data.frame(x = data) 表达式值为假,|| 运算符返回右边的表达式值 ncol(x = data) != 1。ncol(x = data) != 1 表达式值也为假,因此 if 语句的条件不满足,stop() 函数会被调用,导致程序中止。
?
?
if (!is.data.frame(x = data) || ncol(x = data) != 1) {
stop("'SingleExIPlot requires a data frame with 1 column")
}
feature <- colnames(x = data)
data$ident <- idents
if ((is.character(x = sort) && nchar(x = sort) > 0) || sort) {
data$ident <- factor(x = data$ident, levels = names(x = rev(x = sort(x = tapply(X = data[,
feature], INDEX = data$ident, FUN = mean), decreasing = grepl(pattern = paste0("^",
tolower(x = sort)), x = "decreasing")))))
}
if (log) {
noise <- rnorm(n = length(x = data[, feature]))/200
data[, feature] <- data[, feature] + 1
}
?
#rnorm()?函数用于生成正态分布的随机数。
#在上述代码中,n 参数指定了噪声的长度,等于 data[, feature]?列的长度。因此,noise 是一个长度为 data[, feature]?列长度的正态分布随机数向量。
?
#正态噪音是一种常用的随机噪音类型。它具有对称性和均匀性,可以模拟真实数据中的噪声。
else {
noise <- rnorm(n = length(x = data[, feature]))/1e+05
}
?
?
if (!add.noise) {
noise <- noise * 0
}
if (all(data[, feature] == data[, feature][1])) {
warning(paste0("All cells have the same value of ", feature,
"."))
}
else {
data[, feature] <- data[, feature] + noise
}
?
?
axis.label <- "Expression Level"
y.max <- y.max %||% max(data[, feature][is.finite(x = data[,
feature])])
if (type == "violin" && !is.null(x = split)) {
data$split <- split
vln.geom <- geom_violin
fill <- "split"
}
?
else if (type == "splitViolin" && !is.null(x = split)) {
data$split <- split
vln.geom <- geom_split_violin
fill <- "split"
type <- "violin"
}
else {
vln.geom <- geom_violin
fill <- "ident"
}
?
?
?
##################################################################3
#switch(EXPR = type, ...): It uses a switch statement to execute different code blocks based on the type argument, determining the plot type to create.
#根据type执行不同的代码块
'''
2. Violin Plot Configuration:
?
If type == "violin":
Sets x = "ident", y = feature, xlab = "Identity", ylab = axis.label.
Creates violin plot elements using geom_violin or geom_split_violin based on split.
Optionally adds jittered points for individual cell visualization.
Applies log scaling if log = TRUE.
3. Ridge Plot Configuration:
?
If type == "ridge":
Sets x = feature, y = "ident", xlab = axis.label, ylab = "Identity".
Creates ridge plot elements using geom_density_ridges.
Optionally adds jittered points.
Applies log scaling if log = TRUE.
'''
?
?
?
switch(EXPR = type, violin = {
x <- "ident"
y <- paste0("`", feature, "`")
xlab <- "Identity"
ylab <- axis.label
?
?
#geom <- list(...): This line creates a list named geom to store geometric elements that will be added to the ggplot object.
?
?
geom <- list(vln.geom(scale = "width", adjust = adjust,
trim = TRUE), theme(axis.text.x = element_text(angle = 45,
hjust = 1)))
?
#vlnplot调整图形胖瘦的核心参数?geom
#scale = "width": Scales the violins based on the number of observations in each group, ensuring equal widths.
#adjust = adjust: Adjusts the bandwidth of the kernel density estimation used to create the violin shapes. This value likely comes from a user-specified argument.
#trim = TRUE: Trims the violins at the extremes to limit the influence of outliers.
?
?
?
if (is.null(x = split)) {
if (isTRUE(x = raster)) {
jitter <- ggrastr::rasterize(geom_jitter(height = 0,
size = pt.size, show.legend = FALSE))
} else {
jitter <- geom_jitter(height = 0, size = pt.size,
show.legend = FALSE)
}
} else {
if (isTRUE(x = raster)) {
jitter <- ggrastr::rasterize(geom_jitter(position = position_jitterdodge(jitter.width = 0.4,
dodge.width = 0.9), size = pt.size, show.legend = FALSE))
} else {
jitter <- geom_jitter(position = position_jitterdodge(jitter.width = 0.4,
dodge.width = 0.9), size = pt.size, show.legend = FALSE)
}
}
log.scale <- scale_y_log10()
axis.scale <- ylim
?
}, ridge = {
x <- paste0("`", feature, "`")
y <- "ident"
xlab <- axis.label
ylab <- "Identity"
geom <- list(geom_density_ridges(scale = 4), theme_ridges(),
scale_y_discrete(expand = c(0.01, 0)), scale_x_continuous(expand = c(0,
0)))
jitter <- geom_jitter(width = 0, size = pt.size, show.legend = FALSE)
log.scale <- scale_x_log10()
axis.scale <- function(...) {
invisible(x = NULL)
}
}, stop("Unknown plot type: ", type))
?
?
plot <- ggplot(data = data, mapping = aes_string(x = x, y = y,
fill = fill)[c(2, 3, 1)]) + labs(x = xlab, y = ylab,
title = feature, fill = NULL) + theme_cowplot() +
theme(plot.title = element_text(hjust = 0.5))
?
plot <- do.call(what = "+", args = list(plot, geom))
?
plot <- plot + if (log) {
log.scale
}
else {
axis.scale(min(data[, feature]), y.max)
}
if (pt.size > 0) {
plot <- plot + jitter
}
?
if (!is.null(x = cols)) {
if (!is.null(x = split)) {
idents <- unique(x = as.vector(x = data$ident))
splits <- unique(x = as.vector(x = data$split))
labels <- if (length(x = splits) == 2) {
splits
}
else {
unlist(x = lapply(X = idents, FUN = function(pattern,
x) {
x.mod <- gsub(pattern = paste0(pattern, "."),
replacement = paste0(pattern, ": "), x = x,
fixed = TRUE)
x.keep <- grep(pattern = ": ", x = x.mod, fixed = TRUE)
x.return <- x.mod[x.keep]
names(x = x.return) <- x[x.keep]
return(x.return)
}, x = unique(x = as.vector(x = data$split))))
}
if (is.null(x = names(x = labels))) {
names(x = labels) <- labels
}
}
else {
labels <- levels(x = droplevels(data$ident))
}
plot <- plot + scale_fill_manual(values = cols, labels = labels)
}
return(plot)
}
<bytecode: 0x564ff95dec80>
<environment: namespace:Seurat>
?
文章来源:https://blog.csdn.net/qq_52813185/article/details/135442168
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!