ICP(迭代最近点)迭代过程的单步可视化程序
2024-01-10 11:38:30
ICP(迭代最近点)迭代过程的单步可视化程序
一个逐次迭代点云的程序, 可以逐步显示icp迭代的过程, 观察到点云逐步靠近的过程.
其中红色点云为target
点云, 蓝色点云为带先验位姿的source点云
, 绿色为无先验位姿的source点云
在程序中, 先验位姿存与实际变换之间的变化为, x, y, z轴误差5厘米, 三轴旋转均为0.05弧度
在程序运行后, 会在当前目录创建一个result.txt
的文件, 保存的是初始变换, 即最终匹配应该输出的矩阵,
可以将控制台输出的矩阵与该文件中的矩阵进行比较, 判断对齐效果,
注: 有的值会是相反数, 因为旋转次序或方向可能不一样
测试数据集没记错的话应该是 frame005.pcd
运行结果
运行: 以ubuntu为例
mkdir ~/icp_test -p
cd ~/icp_test
vim main.cpp # 将下面cpp代码拷贝进来, 注意修改pcd文件的路径
vim CMakeLists.txt #将下面的CMakelist拷贝进来
cmake .
make
./icp_example
main.cpp
#include <iostream>
#include <fstream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/common/transforms.h>
#include <pcl/registration/icp.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/filter.h>
#include <pcl/filters/voxel_grid.h>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/Dense>
#include <boost/random.hpp>
#include <chrono>
#include <thread>
Eigen::Matrix4f generateRandomTransformation() {
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
boost::random::mt19937 gen(seed); // 随机数生成器
boost::random::uniform_real_distribution<> dis(-0.5, 0.5); // 位移范围
boost::random::uniform_real_distribution<> angle_dis(-M_PI, M_PI); // 旋转范围
Eigen::Matrix4f transform = Eigen::Matrix4f::Identity();
transform(0, 3) = dis(gen); // X轴平移
transform(1, 3) = dis(gen); // Y轴平移
transform(2, 3) = dis(gen); // Z轴平移
// 绕Z轴旋转
float angle = angle_dis(gen);
transform(0, 0) = cos(angle);
transform(0, 1) = -sin(angle);
transform(1, 0) = sin(angle);
transform(1, 1) = cos(angle);
return transform;
}
void saveTransformation(const Eigen::Matrix4f &transform, const std::string &filename) {
std::ofstream file(filename);
if (file.is_open()) {
file << transform;
file.close();
}
}
Eigen::Matrix4f generateCloseTransformation(const Eigen::Matrix4f &original) {
// 单位 [m]
Eigen::Matrix4f closeTransform = original;
closeTransform(0, 3) += 0.05; // X轴微调
closeTransform(1, 3) += 0.05; // Y轴微调
closeTransform(2, 3) += 0.05; // Z轴微调
// 单位 [rad]
Eigen::Matrix3f rotation = closeTransform.block<3, 3>(0, 0);
Eigen::AngleAxisf rotationX(0.05, Eigen::Vector3f::UnitX());
Eigen::AngleAxisf rotationY(0.05, Eigen::Vector3f::UnitY());
Eigen::AngleAxisf rotationZ(0.05, Eigen::Vector3f::UnitZ());
rotation *= (rotationX * rotationY * rotationZ).matrix();
closeTransform.block<3, 3>(0, 0) = rotation;
return closeTransform;
}
int main() {
// 加载点云
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in(new pcl::PointCloud<pcl::PointXYZ>);
if (pcl::io::loadPCDFile<pcl::PointXYZ>("/home/smile/ros/icp/test.pcd", *cloud_in) == -1) {
PCL_ERROR("Couldn't read file test.pcd \n");
return -1;
}
// 移除NaN值
std::vector<int> indices;
pcl::removeNaNFromPointCloud(*cloud_in, *cloud_in, indices);
// 进行体素滤波
pcl::VoxelGrid<pcl::PointXYZ> voxel_grid;
voxel_grid.setInputCloud(cloud_in);
voxel_grid.setLeafSize(0.08f, 0.08f, 0.08f); // 设置体素大小
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
voxel_grid.filter(*cloud_filtered);
// 生成变换并保存到文件
Eigen::Matrix4f base_transformation = generateRandomTransformation();
Eigen::Matrix4f base_transformation_prior = base_transformation;
std::cout << "Base Transformation Matrix:\n" << base_transformation << std::endl;
saveTransformation(base_transformation, "/home/smile/ros/icp/result.txt");
// 生成接近的变换作为先验位姿
Eigen::Matrix4f prior_pose = generateCloseTransformation(base_transformation);
// 应用初始变换
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_transformed(new pcl::PointCloud<pcl::PointXYZ>);
pcl::transformPointCloud(*cloud_filtered, *cloud_transformed, base_transformation);
// 设置ICP实例
pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp, icp_with_prior;
icp.setInputSource(cloud_transformed);
icp.setInputTarget(cloud_filtered);
icp.setMaximumIterations(1); // 每次调用align时执行一次迭代
icp_with_prior.setInputSource(cloud_transformed);
icp_with_prior.setInputTarget(cloud_filtered);
icp_with_prior.setMaximumIterations(1);
// 初始化可视化
pcl::visualization::PCLVisualizer viewer("ICP demo");
viewer.setBackgroundColor(0, 0, 0);
viewer.addPointCloud<pcl::PointXYZ>(cloud_filtered, "cloud_filtered");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "cloud_filtered");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 0.0, 0.0, "cloud_filtered");
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_icp(new pcl::PointCloud<pcl::PointXYZ>(*cloud_transformed));
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_icp_prior(new pcl::PointCloud<pcl::PointXYZ>(*cloud_transformed));
viewer.addPointCloud<pcl::PointXYZ>(cloud_icp, "cloud_icp");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "cloud_icp");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0.0, 1.0, 0.0, "cloud_icp");
viewer.addPointCloud<pcl::PointXYZ>(cloud_icp_prior, "cloud_icp_prior");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "cloud_icp_prior");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 0.0, 0.0, 1.0, "cloud_icp_prior");
viewer.addCoordinateSystem(1.0);
viewer.initCameraParameters();
// 创建初始变换的矩阵, 其中无先验位姿的是一个单位阵
Eigen::Matrix4f icp_result = Eigen::Matrix4f::Identity();
// 先验的矩阵为之前生成的, 在实际变换的基础上添加了扰动的变换矩阵
Eigen::Matrix4f icp_result_prior = prior_pose;
// 计数器
int icp_cnt = 0; // icp迭代次数
int icp_prior_cnt = 0; // 先验icp迭代次数
bool icp_fitness_reached = false;
bool icp_prior_fitness_reached = false;
int iteration_counter = 0; // 迭代频率计数器, 迭代的频率按照 10ms x iteration_counter 可以在下面的循环中修改
while (!viewer.wasStopped()) {
// 如果都完成了收敛, 则不再更新
if(icp_fitness_reached && icp_prior_fitness_reached) continue;
viewer.spinOnce();
// 图像化界面刷新频率10ms, 方便使用鼠标进行控制视角
std::this_thread::sleep_for(std::chrono::milliseconds(10));
// 创建icp之后的新点云
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_icp_it(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_icp_prior_it(new pcl::PointCloud<pcl::PointXYZ>);
// 每10ms x 100 = 1000ms = 1s 即每1秒做一次icp并更新点云
if (++iteration_counter >= 100) {
// 如果没有达到0.0001的分值, 则icp继续迭代
if(!icp_fitness_reached)
{
// 对普通ICP和带有先验位姿的ICP进行迭代
icp.align(*cloud_icp_it,icp_result);
icp_result = icp.getFinalTransformation();
// 检查是否收敛(肯定收敛, 因为最多迭代1次,所以每一次都会收敛)
if (icp.hasConverged())
{
double fitness_score = icp.getFitnessScore();
if(icp_fitness_reached) icp_cnt=icp_cnt;
else icp_cnt += 1;
std::cout << "[ICP] 分数为 " << fitness_score <<std::endl;
// 获取最新一次的变换, 并将该变换应用到带先验的点云上, 更新该点云
base_transformation = icp.getFinalTransformation().cast<float>();
pcl::transformPointCloud(*cloud_transformed, *cloud_icp_it, base_transformation);
viewer.updatePointCloud<pcl::PointXYZ>(cloud_icp_it, "cloud_icp");
//真正的停止条件(收敛条件)
if(fitness_score<=0.001)
{
icp_fitness_reached = true;
std::cout << "======================================================="<<std::endl;
std::cout << "[ICP]完成收敛 " <<std::endl;
std::cout << "[ICP]迭代次数为 " << icp_cnt <<std::endl;
std::cout << "[ICP]变换矩阵 " << std::endl;
std::cout << icp.getFinalTransformation() << std::endl;
std::cout << "======================================================="<<std::endl;
}
}
}
if(!icp_prior_fitness_reached)
{
icp_with_prior.align(*cloud_icp_prior_it, icp_result_prior);
icp_result_prior = icp_with_prior.getFinalTransformation();
// 同理, 这里并不是真正的停止条件
if (icp_with_prior.hasConverged())
{
double fitness_score_prior = icp_with_prior.getFitnessScore();
if(icp_prior_fitness_reached) icp_prior_cnt = icp_prior_cnt;
else icp_prior_cnt += 1;
std::cout << "[ICP+先验] 分数为 " << fitness_score_prior <<std::endl;
// 带先验的停止条件也是0.0001分以下终止
if(fitness_score_prior<=0.001)
{
icp_prior_fitness_reached = true;
std::cout << "======================================================="<<std::endl;
std::cout << "[ICP+先验]完成收敛 " <<std::endl;
std::cout << "[ICP+先验]迭代次数为 " << icp_prior_cnt <<std::endl;
std::cout << "[ICP+先验]变换矩阵 " <<std::endl;
std::cout << icp_with_prior.getFinalTransformation() << std::endl;
std::cout << "======================================================="<<std::endl;
}
// 获取最新一次的变换, 并将该变换应用到带先验的点云上, 更新该点云
base_transformation_prior = icp_with_prior.getFinalTransformation().cast<float>();
pcl::transformPointCloud(*cloud_transformed, *cloud_icp_prior_it, base_transformation_prior);
viewer.updatePointCloud<pcl::PointXYZ>(cloud_icp_prior_it, "cloud_icp_prior");
}
}
// 重置迭代计数器
iteration_counter = 0;
}
}
return 0;
}
CMakeLists.txt
cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(icp_example)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED True)
find_package(PCL 1.8 REQUIRED)
include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})
add_executable(icp_example main.cpp)
target_link_libraries(icp_example ${PCL_LIBRARIES})
文章来源:https://blog.csdn.net/SmileJayNew/article/details/135496381
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。 如若内容造成侵权/违法违规/事实不符,请联系我的编程经验分享网邮箱:veading@qq.com进行投诉反馈,一经查实,立即删除!