Redis面试题

2023-12-28 11:45:17

70、Redis支持哪几种数据类型?

答:Redis支持五种数据类型:string(字符串),hash(哈希),list(列表),set(集合)及zset(sorted set:有序集合)。

还有一些数据结构如HyperLogLog、Geo、Pub/Sub等,我们也最好知道,另外像Redis Module,像BloomFilter,RedisSearch,Redis-ML等,能有个印象,哪怕知其然不知其所以然也比听都没听过好点。

71、Redis有哪几种淘汰策略?

Redis的内存淘汰策略是指在Redis的用于缓存的内存不足时,怎么处理需要新写入且需要申请额外空间的数据。

no-eviction:当内存不足以容纳新写入数据时,新写入操作会报错。
allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。
allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。
volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。
volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。
volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。

注意这里的6种机制,volatile和allkeys规定了是对已设置过期时间的数据集淘汰数据还是从全部数据集淘汰数据,后面的lru、ttl以及random是三种不同的淘汰策略,再加上一种no-enviction永不回收的策略。

使用策略规则:

  1. 如果数据呈现幂律分布,也就是一部分数据访问频率高,一部分数据访问频率低,则使用allkeys-lru

  2. 如果数据呈现平等分布,也就是所有的数据访问频率都相同,则使用allkeys-random

72、为什么 Redis 需要把所有数据放到内存中?

答:Redis 为了达到最快的读写速度将数据都读到内存中,并通过异步的方式将数据写入磁盘。所以 redis 具有快速和数据持久化的特征,如果不将数据放在内存中,磁盘 I/O 速度为严重影响 redis 的 性能。

在内存越来越便宜的今天,redis 将会越来越受欢迎, 如果设置了最大使用的内存,则数据已有记录数达 到内存限值后不能继续插入新值。

73、Redis 有哪些适合的场景?

(1)会话缓存(Session Cache)

最常用的一种使用 Redis 的情景是会话缓存(sessioncache),用 Redis 缓存会话比其他存储(如Memcached)的优势在于:Redis 提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的 购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗?

幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用 Redis 来缓存会话的文档。甚至广为 人知的商业平台 Magento 也提供 Redis 的插件。

(2)全页缓存(FPC)

除基本的会话 token 之外,Redis 还提供很简便的 FPC 平台。回到一致性问题,即使重启了 Redis 实 例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似 PHP 本地FPC。

再次以 Magento 为例,Magento 提供一个插件来使用 Redis 作为全页缓存后端。此外,对 WordPress 的用户来说,Pantheon 有一个非常好的插件 wp-redis,这个插件能帮助你以最快 速度加载你曾浏览过的页面。

(3)队列

Reids 在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得 Redis 能作为一个很好的消息队列 平台来使用。Redis 作为队列使用的操作,就类似于本地程序语言(如 Python)对 list 的 push/pop操作。

如果你快速的在 Google 中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的 就是利用 Redis 创建非常好的后端工具,以满足各种队列需求。例如,Celery 有一个后台就是使用Redis 作为 broker,你可以从这里去查看。
(4)排行榜/计数器

Redis 在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(SortedSet)也使 得我们在执行这些操作的时候变的非常简单,Redis 只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的 10 个用户–我们称之为“user_scores”,我们只需要像 下面一样执行即可: 当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执 行:

ZRANGE user_scores 0 10 WITHSCORES

Agora Games 就是一个很好的例子,用 Ruby 实现的,它的排行榜就是使用 Redis 来存储数据的,你可 以在这里看到。
(5)发布/订阅

最后(但肯定不是最不重要的)是 Redis 的发布/订阅功能。发布/订阅的使用场景确实非常多。我已看见 人们在社交网络连接中使用,还可作为基于发布/订阅的脚本触发器,甚至用 Redis 的发布/订阅功能来建 立聊天系统!

74、说说 Redis 哈希槽的概念?

Redis 集群没有使用一致性 hash,而是引入了哈希槽的概念,Redis 集群有 16384 个哈希槽,每个 key 通 过 CRC16 校验后对 16384 取模来决定放置哪个槽,集群的每个节点负责一部分 hash 槽。

edis 集群的主从复制模型是怎样的?

为了使在部分节点失败或者大部分节点无法通信的情况下集群仍然可用,所以集群使用了主从复制模型,每个节点都会有 N-1 个复制品。

75、Redis 集群会有写操作丢失吗?为什么?

Redis 并不能保证数据的强一致性,这意味这在实际中集群在特定的条件下可能会丢失写操作。

76、Redis 集群之间是如何复制的?

答:异步复制

77、Redis 中的管道有什么用?

一次请求/响应服务器能实现处理新的请求即使旧的请求还未被响应,这样就可以将多个命令发送到服务 器,而不用等待回复,最后在一个步骤中读取该答复。这就是管道(pipelining),是一种几十年来广泛使用的技术。例如许多 POP3 协议已经实现支持这个功 能,大大加快了从服务器下载新邮件的过程。

78怎么理解 Redis 事务?

事务是一个单独的隔离操作:事务中的所有命令都会序列化、按顺序地执行,事务在执行的过程中,不会 被其他客户端发送来的命令请求所打断。
事务是一个原子操作:事务中的命令要么全部被执行,要么全部都不执行。

79、Redis 事务相关的命令有哪几个?

MULTI、EXEC、DISCARD、WATCH

	MULTI :开启事务,redis会将后续的命令逐个放入队列中,然后使用EXEC命令来原子化执行这个命令系列。

EXEC:执行事务中的所有操作命令。

DISCARD:取消事务,放弃执行事务块中的所有命令。

WATCH:监视一个或多个key,如果事务在执行前,这个key(或多个key)被其他命令修改,则事务被中断,不会执行事务中的任何命令。

UNWATCH:取消WATCH对所有key的监视。

80、Redis key 的过期时间和永久有效分别怎么设置?

EXPIRE 和 PERSIST 命令

81、Redis 如何做内存优化?

尽可能使用散列表(hashes),散列表(是说散列表里面存储的数少)使用的内存非常小,所以你应该 尽可能的将你的数据模型抽象到一个散列表里面。比如你的 web 系统中有一个用户对象,不要为这个用户的名称,姓氏,邮箱,密码设置单独的 key,而是 应该把这个用户的所有信息存储到一张散列表里面。

82、Redis 回收进程如何工作的?

一个客户端运行了新的命令,添加了新的数据。Redi 检查内存使用情况,如果大于 maxmemory 的限制, 则根据设定好的策略进行回收。一个新的命令被执行,等等。所以我们不断地穿越内存限制的边界,通过不断达到边界然后不断地回收回到边界以下。如果一个命令的结果导致大量内存被使用(例如很大的集合的交集保存到一个新的键),不用多久内存限 制就会被这个内存使用量超越。

83、Redis集群最大节点个数是多少?

答:16384个。

83、Redis集群如何选择数据库?

答:Redis集群目前无法做数据库选择,默认在0数据库。

84、Redis的内存用完了会发生什么?

答:如果达到设置的上限,Redis的写命令会返回错误信息(但是读命令还可以正常返回。)或者你可以将Redis当缓存来使用配置淘汰机制,当Redis达到内存上限时会冲刷掉旧的内容。

85、如果这个redis正在给线上的业务提供服务,那使用keys指令会有什么问题?

答:redis的单线程的。keys指令会导致线程阻塞一段时间,线上服务会停顿,直到指令执行完毕,服务才能恢复。这个时候可以使用scan指令,scan指令可以无阻塞的提取出指定模式的key列表,但是会有一定的重复概率,在客户端做一次去重就可以了,但是整体所花费的时间会比直接用keys指令长。

86、如果有大量的key需要设置同一时间过期,一般需要注意什么?

答:如果大量的key过期时间设置的过于集中,到过期的那个时间点,redis可能会出现短暂的卡顿现象。一般需要在时间上加一个随机值,使得过期时间分散一些。

87、Redis 集群方案应该怎么做?都有哪些方案?

codis:目前用的最多的集群方案,基本和 twemproxy 一致的效果,但它支持在节点数量改变情况下,旧节点数据可恢复到新 hash 节点。
redis cluster3.0 自带的集群,特点在于他的分布式算法不是一致性 hash,而是 hash 槽的概念,以及自身支持节点设置从节点。具体看官方文档介绍。
在业务代码层实现,起几个毫无关联的 redis 实例,在代码层,对 key 进行 hash 计算,然后去对应的redis 实例操作数据。这种方式对 hash 层代码要求比较高,考虑部分包括,节点失效后的替代算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。

88、使用过 Redis 分布式锁么,它是怎么实现的?

答:先拿 setnx 来争抢锁,抢到之后,再用 expire 给锁加一个过期时间防止锁忘记了释放。

89、如果在 setnx 之后执行 expire 之前进程意外 crash 或者要重启维护了,那会怎么样?

答:set 指令有非常复杂的参数,这个应该是可以同时把 setnx 和 expire 合成一条指令来用的!

90、使用过 Redis 做异步队列么,你是怎么用的?有什么缺点?

一般使用 list 结构作为队列,rpush 生产消息,lpop 消费消息。当 lpop 没有消息的时候,要适当 sleep 一会再重试。

缺点:在消费者下线的情况下,生产的消息会丢失,得使用专业的消息队列如 rabbitmq 等。

能不能生产一次消费多次呢?

使用 pub/sub 主题订阅者模式,可以实现 1:N 的消息队列。

91、缓存穿透、缓存击穿、缓存雪崩解决方案?

缓存穿透:指查询一个一定不存在的数据,如果从存储层查不到数据则不写入缓存,这将 导致这个不存在的数据每次请求都要到 DB 去查询,可能导致 DB 挂掉。

解决方案:

1.查询返回的数据为空,仍把这个空结果进行缓存,但过期时间会比较短;

2.布 隆过滤器:将所有可能存在的数据哈希到一个足够大的 bitmap 中,一个一定不存在的数据 会被这个 bitmap 拦截掉,从而避免了对 DB 的查询。

缓存击穿:对于设置了过期时间的 key,缓存在某个时间点过期的时候,恰好这时间点对 这个 Key 有大量的并发请求过来,这些请求发现缓存过期一般都会从后端 DB 加载数据并 回设到缓存,这个时候大并发的请求可能会瞬间把 DB 压垮。

解决方案:

1.使用互斥锁:当缓存失效时,不立即去load db,先使用如Redis的setnx去设 置一个互斥锁,当操作成功返回时再进行load db的操作并回设缓存,否则重试get缓存的 方法。

2.永远不过期:物理不过期,但逻辑过期(后台异步线程去刷新)。

缓存雪崩:设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部 转发到 DB,DB 瞬时压力过重雪崩。与缓存击穿的区别:雪崩是很多 key,击穿是某一个key 缓存。

解决方案:

将缓存失效时间分散开,比如可以在原有的失效时间基础上增加一个随机值, 比如 1-5 分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效 的事件。

92、为什么redis单线程还是那么快?

答:redis利用队列技术将并发访问变为串行访问,消除了传统数据库串行控制的开销。

93、使用 redis 如何设计分布式锁?说一下实现思路?使用 zk 可以吗?如何实现?这两种有什 么区别?

redis:

1.线程 A setnx(上锁的对象,超时时的时间戳 t1),如果返回 true,获得锁。

2.线程 B 用 get 获取 t1,与当前时间戳比较,判断是是否超时,没超时 false,若超时执行第 3 步。

3.计算新的超时时间 t2,使用 getset 命令返回 t3(该值可能其他线程已经修改过),如果t1==t3,获得锁,如果 t1!=t3 说明锁被其他线程获取了。4.获取锁后,处理完业务逻辑,再去判断锁是否超时,如果没超时删除锁,如果已超时, 不用处理(防止删除其他线程的锁)。

zk:

1.客户端对某个方法加锁时,在 zk 上的与该方法对应的指定节点的目录下,生成一个唯一 的瞬时有序节点 node1。

2.客户端获取该路径下所有已经创建的子节点,如果发现自己创建的 node1 的序号是最小 的,就认为这个客户端获得了锁。

3.如果发现 node1 不是最小的,则监听比自己创建节点序号小的最大的节点,进入等待。

4.获取锁后,处理完逻辑,删除自己创建的 node1 即可。

区别:zk 性能差一些,开销大,实现简单。

94、知道 redis 的持久化吗?底层如何实现的?有什么优点缺点?

RDB(Redis DataBase:在不同的时间点将 redis 的数据生成的快照同步到磁盘等介质上):内存 到硬盘的快照,定期更新。缺点:耗时,耗性能(fork+io 操作),易丢失数据。AOF(Append Only File:将redis所执行过的所有指令都记录下来,在下次redis重启时,只 需要执行指令就可以了):写日志。缺点:体积大,恢复速度慢。

bgsave 做镜像全量持久化,aof 做增量持久化。因为 bgsave 会消耗比较长的时间,不够实 时,在停机的时候会导致大量的数据丢失,需要 aof 来配合,在 redis 实例重启时,优先使 用 aof 来恢复内存的状态,如果没有 aof 日志,就会使用 rdb 文件来恢复。Redis 会定期做aof 重写,压缩 aof 文件日志大小。Redis4.0 之后有了混合持久化的功能,将 bgsave 的全量 和 aof 的增量做了融合处理,这样既保证了恢复的效率又兼顾了数据的安全性。bgsave 的 原理,fork 和 cow, fork 是指 redis 通过创建子进程来进行 bgsave 操作,cow 指的是 copy on write,子进程创建后,父子进程共享数据段,父进程继续提供读写服务,写脏的页面数据 会逐渐和子进程分离开来。

95、为什么要做Redis分区?

答:分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。

96、你知道有哪些Redis分区实现方案?

答:客户端分区就是在客户端就已经决定数据会被存储到哪个redis节点或者从哪个redis节点读取。大多数客户端已经实现了客户端分区。

1.代理分区意味着客户端将请求发送给代理,然后代理决定去哪个节点写数据或者读数据。代理根据分区规则决定请求哪些Redis实例,然后根据Redis的响应结果返回给客户端。redis和memcached的一种代理实现就是Twemproxy

2.查询路由(Query routing) 的意思是客户端随机地请求任意一个redis实例,然后由Redis将请求转发给正确的Redis节点。Redis Cluster实现了一种混合形式的查询路由,但并不是直接将请求从一个redis节点转发到另一个redis节点,而是在客户端的帮助下直接redirected到正确的redis节点。

97、Redis分区有什么缺点?

涉及多个key的操作通常不会被支持。例如你不能对两个集合求交集,因为他们可能被存储到不同的Redis实例(实际上这种情况也有办法,但是不能直接使用交集指令)。

同时操作多个key,则不能使用Redis事务。

分区使用的粒度是key,不能使用一个非常长的排序key存储一个数据集(The partitioning granularity is the key, so it is not possible to shard a dataset with a single huge key like a very big sorted set)。

当使用分区的时候,数据处理会非常复杂,例如为了备份你必须从不同的Redis实例和主机同时收集RDB / AOF文件。

分区时动态扩容或缩容可能非常复杂。Redis集群在运行时增加或者删除Redis节点,能做到最大程度对用户透明地数据再平衡,但其他一些客户端分区或者代理分区方法则不支持这种特性。然而,有一种预分片的技术也可以较好的解决这个问题。

98、Redis持久化数据和缓存怎么做扩容?

答:如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。

如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。

99、redis的并发竞争问题如何解决?

答:Redis为单进程单线程模式,采用队列模式将并发访问变为串行访问。Redis本身没有锁的概念,Redis对于多个客户端连接并不存在竞争,但是在Jedis客户端对Redis进行并发访问时会发生连接超时、数据转换错误、阻塞、客户端关闭连接等问题,这些问题均是由于客户端连接混乱造成。

对此有2种解决方法:

1.客户端角度,为保证每个客户端间正常有序与Redis进行通信,对连接进行池化,同时对客户端读写Redis操作采用内部锁synchronized。2.服务器角度,利用setnx实现锁。

注:对于第一种,需要应用程序自己处理资源的同步,可以使用的方法比较通俗,可以使用synchronized也可以使用lock;第二种需要用到Redis的setnx命令,但是需要注意一些问题。

100、简述redis的哨兵模式

答:哨兵是对redis进行实时的监控,主要有两个功能。

监测主数据库和从数据库是否正常运行。

当主数据库出现故障的时候,可以自动将一个从数据库转换为主数据库,实现自动切换。

101、redis的哨兵的监控机制是怎样的?

答:哨兵监控也是有集群的,会有多个哨兵进行监控,当判断发生故障的哨兵达到一定数量的时候才进行修复。一个健壮的部署至少需要三个哨兵实例。

1.每个Sentinel以每秒钟一次的频率向它所知的Master,Slave以及其他 Sentinel 实例发送一个 PING 命令

2.如果一个实例(instance)距离最后一次有效回复 PING 命令的时间超过 down-after-milliseconds 选项所指定的值, 则这个实例会被 Sentinel 标记为主观下线。

3.如果一个Master被标记为主观下线,则正在监视这个Master的所有 Sentinel 要以每秒一次的频率确认Master的确进入了主观下线状态。

4.当有足够数量的 Sentinel(大于等于配置文件指定的值)在指定的时间范围内确认Master的确进入了主观下线状态, 则Master会被标记为客观下线

5.在一般情况下, 每个 Sentinel 会以每 10 秒一次的频率向它已知的所有Master,Slave发送 INFO 命令

6.当Master被 Sentinel 标记为客观下线时,Sentinel 向下线的 Master 的所有 Slave 发送 INFO 命令的频率会从 10 秒一次改为每秒一次

? 7.若没有足够数量的 Sentinel 同意 Master 已经下线, Master 的客观下线状态就会被移除。若 Master 重新向 Sentinel 的 PING 命令返回有效回复, Master 的主观下线状态就会被移除。

14、redis持久化

众所周知,redis是内存型的存储数据库。效率高的同时,也有一个弊端不可忽视,那就是数据安全问题。此处安全指的是数据丢失,并非其他。我们将数据都存储在内存中,如果发生宕机等意外情况导致redis重启,那么内存中的数据会全部丢失,多么可怕的一件事。那么我们怎么解决呢?答案就是数据的持久化。

数据的持久化有两种方式:RDB和AOF两种方式。一开始你会觉得两个名字很难记,其实了解过你就会发现其实这两种方式都是以相关数据存储文件的后缀名命名的。

1.1RDB

首先说一下RDB方式。RDB是将内存中所有的数据都持久化到硬盘中,这个过程还有一个名词,那就是『快照』。Redis默认将我们的数据保存在当前进程目录的 dump.rdb文件中,看一下后缀名,再看一下这个方式名,是不是发现了什么呢?了解完之后,要关注的就是怎么实现的问题的了。

redis启动的时候是会自动读取RDB快照文件的,这也 就是为什么RDB可以解决数据的持久化。

方式一:SAVE和BGSAVE命令

这种方式是让我们手动的进行快照操作。他俩的区别就是SAVE命令快照,会阻塞后来客户端的请求;而BGSAVE命令则是异步的方式进行快照的。区别显而易见,SAVE命令会打断正在进行的操作,如果数据超多,这是一种损失,所以必须减少其使用,如果必须使用,那么可以选在访问量极少的时间段。BGSAVE则可以一边接受客户端请求,一边快照,不会对网站造成什么损失。

方式二:自己配置快照条件

# 900的单位是s,1是被更改的键的个数。这句命令的意思就是,900s内被更改的键的个数大于1的时候,自动进行快照操作。
save 900 1
# 指定快照文件的文件名,这个就不要写其他的了
dbfilename dump.rdb
# 指定快照文件存储路径
dir ./

配置文件在redis.conf这个文件中。

方式三:执行flushall命令

这个命令进行快照操作有一个前提,那就是我们像方式二中配置了快照的设置。当我们使用了 flushall这个命令,Redis会清除数据库中所有的数据,而且会执行一次快照操作。

如果没有设置save,是不会进行快照操作的!!!!

1.1.1快照过程

在redis执行快照的时候,其实先使用了 fork函数。这个函数执行的时候有个特点,就是我们我们备份数据的时候,如果又有数据写入,后面的数据是不会备份的。意思就是我们执行快照的时候,其实保存的是执行 fork函数那一刻的所有数据。然后父进程继续处理客户端的相关请求,子进程将要保存的数据写入硬盘的临时文件,只有在子进程将所有的数据写完之后,才会将这个文件替换旧的RDB文件。这样就完成了一次快照操作。

1.2AOF

简单的说一下AOF方式,它不会像RDB方式全量的将数据持久化至硬盘,而是只保存执行过的命令。下次启动的时候,其实就是将所有的命令再执行一遍。下面仍然是最关心的如何实现的问题。

我们需要在配置文件中将 appendonly设置为 yes 。开启之后Redis每执行一条写操作(注意是写入的命令),就会将这个命令记录到 appendonly.aof文件中,看这个名字,是不是同样很熟悉,像不像本小节的标题呢?

在AOF中有一个概念,叫做文件重写。当我们多次设置同一个value的时候,redis中只会有最后一次的设置结果,那么前几次的操作,就完全没有必要记录下来再次执行了,会严重影响效率,所以就涉及到了AOF重写。重写就是将没用的命令删除的一个过程。

我们可以让Redis自动进行重写操作,那就是现在配置文件中进行如下设置:

# 目前的AOF文件的大小超过上一次重写时的AOF文件的百分之多少时再次进行重写,如果之前没有重写过,则以启动时AOF文件大小为依据。auto-aof-rewrite-percentage 100# 当AOF文件的大小大于64MB时才进行重写,因为如果AOF文件本来就很小时,有几个无效的命令也是无伤大雅的事情。auto-aof-rewrite-min-size 64mb

所有的东西都介绍完了,我们当然要讲一下如何将数据同步到硬盘中。

AOF文件我们可以设置同步到硬盘的时间,以减少数据的丢失。

# 实时的写入硬盘appendfsync always# 每秒写入一次appendfsync everysec# 不主动写入appendfsync no
1.3重要

重启服务的时候一定要加上配置参数:

redis-server <redis.conf文件的路径>

23、redis五种数据类型底层实现?

redis中有五种数据类型:字符串、列表、哈希、集合以及有序集合。

redis底层有简单字符串、链表、字典、跳跃表、整数集合、压缩列表等数据结构,但是,不是直接使用他们构建键值对的,而是基于这些数据结构创建了一个对象系统,这些对象系统就是咱们的五种数据类型。通过这五种不同类型的对象,Redis可以在执行命令之前,根据对象的类型判断一个对象是否可以执行给定的命令,而且可以针对不同的场景,为对象设置多种不同的数据结构,从而优化对象在不同场景下的使用效率。

在Redis中,键总是一个字符串对象,而值可以是字符串、列表、集合等对象,所以我们通常说的键为字符串键,表示的是这个键对应的值为字符串对象,我们说一个键为集合键时,表示的是这个键对应的值为集合对象。

首先是字符串对象,它的编码可以是int,raw或者embstr。其中int 编码是用来保存整数值,raw编码是用来保存长字符串,而embstr是用来保存短字符串。其中的长短字符串以44个字节为界限进行区分,当然这是redis3.2之后的版本才改的。编码的转化中,值得注意的几点是redis中对于浮点数类型作为字符串进行保存,需要的时候再将它转换成浮点数类型;int编码保存的值不是整数或大小超过了long类型(int就是可以用long类型表示的整数)的范围时,自动转化为raw。redis中embstr由于考虑到内存分配时的缺陷,只能用于读。所以修改embstr对象时,会先转化为raw在进行修改。

列表对象编码可以是压缩列表,也可以是双端链表。当列表保存元素个数小于512个且每个元素长度小于64个字节时,采用压缩列表编码;除此之外的所有情况使用双端链表编码。

双端链表:首先解释一下什么是链表,就是存储数据的时候,每一个节点中保存着下一个节点的指针,存储十分灵活,任意添加数据时,节约内存开销。双端链表就是链表具有前置节点和后置节点的引用,获取这两个节点时间复杂度都为O(1)。

压缩列表:由一系列特殊编码的连续内存块组成的顺序性数据结构。一个压缩列表可以包含任意多个节点,每个节点可以保存一个字节数组或者一个整数值。

简单的理解:去电影院买票看电影,压缩列表要的是连号的座位,双端链表只要有座位就行,管它连号不连号。

哈希对象,底层是压缩列表和hashtable实现的。而hashtable 编码的哈希表对象底层使用字典数据结构,哈希对象中的每个键值对都使用一个字典键值对。同样,当列表保存元素个数小于512个且每个元素长度小于64个字节时,采用压缩列表编码;除此之外的所有情况使用hashtable 编码。

集合对象的编码可以是 intset 或者 hashtable。intset 编码的集合对象使用整数集合作为底层实现,集合对象包含的所有元素都被保存在整数集合中。hashtable 编码的集合对象使用 字典作为底层实现,字典的每个键都是一个字符串对象,这里的每个字符串对象就是一个集合中的元素,而字典的值则全部设置为 null。当集合对象中所有元素都是整数,且所有元素数量不超过512时,采用intset编码。除此之外使用hashtable编码。

有序集合的编码可以是 ziplist 或者 skiplist。ziplist 编码的有序集合对象使用压缩列表作为底层实现,每个集合元素使用两个紧挨在一起的压缩列表节点来保存,第一个节点保存元素的成员,第二个节点保存元素的分值。并且压缩列表内的集合元素按分值从小到大的顺序进行排列,小的放置在靠近表头的位置,大的放置在靠近表尾的位置。skiplist 编码的有序集合对象使用 zset 结构作为底层实现,一个 zset 结构同时包含一个字典和一个跳跃表。字典的键保存元素的值,字典的值则保存元素的分值;跳跃表节点的 object 属性保存元素的成员,跳跃表节点的 score 属性保存元素的分值。这两种数据结构会通过指针来共享相同元素的成员和分值,所以不会产生重复成员和分值,造成内存的浪费。压缩列表的使用条件同上,除此之外使用跳跃表。

其实有序集合单独使用字典或跳跃表其中一种数据结构都可以实现,但是这里使用两种数据结构组合起来,原因是假如我们单独使用 字典,虽然能以 O(1) 的时间复杂度查找成员的分值,但是因为字典是以无序的方式来保存集合元素,所以每次进行范围操作的时候都要进行排序;假如我们单独使用跳跃表来实现,虽然能执行范围操作,但是查找操作有 O(1)的复杂度变为了O(logN)。因此Redis使用了两种数据结构来共同实现有序集合。

文章来源:https://blog.csdn.net/weixin_53909748/article/details/135256336
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。